SERDP and ESTCP Energy Initiatives

Jeffrey Marqusee, Ph.D.
ESTCP, Director
SERDP, Technical Director

May 24, 2007
Environmental Policy

• Environmental Mission: Provide, operate and sustain in a cost-effective and environmentally sound manner the installation assets and services necessary to support our military forces

• DoD Environmental Programs:
 – maintain, restore and improve DoD’s natural and built infrastructure
 – preserve the environment
 – protect our communities
Environmental Management

• **History**
 – denial ➔ compliance ➔ prevention ➔ sustainability

• **Environmental sustainability**
 – weapon systems: manufacture, maintenance and use
 – facilities and ranges to support the mission

• **Environment and Energy are linked**
 – Environmental performance impacts energy use
 – Energy decisions have environmental impacts
 • Air quality
 • Global warming
 – Sustainability forces a linkage
Sustainability

• What does it mean?
“…to ensure the needs of the present without compromising the ability of the future generations to meet their own needs.”
– Brundtland Commission – 1987

• Triple Bottom Line
– People (Human Capitol)
– Readiness (Military Capitol)
– Planet (Natural Capitol)
DoD’s Environmental Technology Programs

- Demonstration / Validation
- Basic and Applied Research
Environmental Technology Development Process

Requirements → Basic/Applied Research → Advanced Development → Demonstration/Validation → Implementation → Commercialization

REGULATORY COOPERATION
INDUSTRY PARTNERSHIPS
SERDP

- Established by FY 1991 Defense Authorization Act
- DoD, DOE and U.S. EPA partnership

Purposes

- Address DoD and DOE environmental concerns through R&D
- Share data collection and analysis capabilities
- Identify and share DoD research technology
- Identify private sector technologies useful to DoD
ESTCP Goals

• Demonstrate innovative cost-effective environmental technologies
 – Capitalize on past investments
 – Transition technology out of the lab

• Promote implementation
 – Direct technology insertion
 – Gain regulatory and end user acceptance

Priority: needs of the DoD user community
Environmental Drivers

Sustainability of Ranges and Range Operations

Maritime Sustainability
Threatened and Endangered Species

Toxic Air Emissions and Dust

Unexploded Ordnance and Munitions Constituents

Urban Growth Noise NOX and PM & Encroachment
Environmental Drivers

Reduction of Current and Future Liability

Current Liabilities

- Chlorinated Solvents
- Munitions Constituents
- UXO
- Emerging Contaminants

Future Liabilities

- Control Life Cycle Costs
 - Elimination of Hazardous Materials
 - Achieve Compliance Through Pollution Prevention

Contamination from Past Practices
Environmental Quality

Weapons Systems & Platforms

Munitions Management

Environmental Restoration

Sustainable Infrastructure
SERDP/ESTCP Initiatives

• Biodiesel

• Gas Turbine Engines

• Green Building Design

• Future Energy Initiatives
Biodiesel

• Nontoxic, biodegradable fuel made from organic fats and oils
• Designated an Alternative Fuel under EPACT
 – Specification set by ASTM 6751
• Environmental benefits
 – Renewable resource
 – Cleaner air emissions
 – Reduced greenhouse gas emission
 – Cost savings
 • Most cost effective method to meet alternative fuel vehicle requirement
Non-Tactical Vehicles

- Tested in 10 DoD vehicles/generator
- Assessed for typical DoD loads
- Assessed in cooperation with
 - CARB and NREL
- Compared: multiple biodiesel blends and types, CARB ULSD and JP-8
- Assessed regulated and unregulated air emissions and fuel efficiency

- Air emissions statistical equivalent to CARB ULSD
 - Cleaner than JP-8 or diesel fuel no 2
- No differences between YGA, YGB or soy based
- No maintenance of mileage issues
 - widely used across DoD
Tactical Vehicles

- Tri-service assessment for non-deployed tactical vehicles
 - Non-deployable and deployable tactical vehicles and equipment
 - Laboratory testing, controlled field testing and fleet demonstrations
- Dem/Val biodiesel and fuel management technologies and procedures can meet military requirements
 - quality control procedures
 - tank management procedures
 - tank filtration technologies
 - fuel storage
 - stability, cold flow and water affinity
 - fuel additives
Gas Turbine Engines (GTE)

- GTE are primary use of fuel in DoD
 - Environmental issues are significant
 - NOx, particulate matter (PM) etc.

- Multifaceted RDT&E program
 - Assessment
 - Measurement techniques
 - Source inventory
 - New combustor technology
 - Trapped Vortex Combustor
 - Fundamental combustion science
 - Support engine design
 - Assess fuel impacts
Trapped Vortex Combustor

IDEA CONCEIVED
AFRL/PR/AFOSR
1993-1995

CONCEPT EVALUATED
AFRL/PR/AFOSR/SERDP
1996

ESTABLISHED DESIGN
AFRL/PR/NAVSEA/SERDP AFRL/PR/AFOSR/SERDP
1997 1998-2003

SECTOR TESTS
AFRL/PR/AFOSR/SERDP
1998-2003

ANNULAR TESTS
NAVAIR/AFRL/ESTCP
2004-2008

Lean Burn
Rich Burn
Lean Burn
Rich Burn

Primary = 3.30
φ
Total = 0.26

Primary = 0.26
φ
Total = 0.24

25.4mm
1.75 mm Dia. FUEL JET
2.286 mm Dia. AIR JET

Annular Air = 2000 slpm

40% Reduction in Aircraft NOx
58% Reduction in Lean-Blow-Out
42% Increase in Altitude Re-light
40% Increase in Turndown Ratio
Fundamental Combustion Science

- Develop prediction tools for real fuels
 - Predict PM formation
 - Understand engine design issues
 - Assess fuel impacts

- Multi-institute effort
 - Experimental
 - Theoretical
 - Engine Simulations
 - <$6M over 4 years
Green Buildings

• Demonstrate “whole system” design processes
 – Using COTS building materials and components
 – >25% decrease in operational cost
 • and environmental risk reduction
 – Jointly funded with milcon and Army Southeast IMA
 • Ft. Bragg

• Validate first costs, life-cycle costs, resource use, and waste generation
 – Electrical and water use and cost
 – Solid waste sent off-site, lbs and cost
 – Wastewater sent off-site
 – Storm water flow to sewers
 – Air quality – VOCs and O2/CO2 balance
 – Cost of O&M: custodial, grounds, repairs
 – Construction costs
 – Occupant comfort and productivity
SERDP/ESTCP Energy R&D

• Support the goal of sustainability
 – Address both the demand and supply side
 • leverage DOE’s and private sector investments

• Address multi-Service requirements
 – Stimulate and integrate

• Focus
 – DoD unique needs
 – DoD unique opportunities
New Energy Initiatives

SERDP

• Scalable Power Grids: Facilitate The Use of Renewable Energy Technologies
 • Provide DOD installations and contingency operations with the capability to network distributed energy resources (including renewables) in a “plug-and-play” scalable configuration

• Electricity from Waste Heat for Deployed Forces
 • Extract the maximum amount of energy from every heat source that is normally present in deployed forces locations: mobile kitchens, diesel engines/generators etc

ESTCP

• Innovative energy efficiency and renewable technologies for sustainable installations
ESTCP Methodology

• Partner With Stakeholders and Test at DoD Facilities
 – Developer, regulators, end-user
 – Direct transition

• Validate Operational Cost and Performance
 – Independent test and evaluation
 – Satisfy regulatory and user communities

• Identify DoD Market Opportunities
 – Technology transfer across DoD
Installation Energy Dem/Val

• Use DoD facilities as test bed for innovative energy technologies
 – Validate performance, cost, and environmental impacts
 – Transfer lessons learned, design and procurement information across all Services and installations
 • Partner with Services’ engineering support centers
 – Directly reach out to private sector for innovations

• Test and evaluate for all DoD facilities
 – In cooperation with Energy Conservation Investment Program (ECIP)
Sponsored by SERDP and ESTCP

Partners in Environmental Technology

Technical Symposium and Workshop

December 4 - 6, 2007

Marriott Wardman Park Hotel
Washington, D.C.
Home Pages

http://www.serdp.org

http://www.esttcp.org