

Changing World Technologies, Inc

Renewable Diesel Production

"Waste to Fuel Oil"

May 21-24, 2007 Columbus, OH

Eliminate Waste Produce Renewable Energy Reduce Global Warming Improve Quality of Life

Tapping into organic waste...

...using a Thermal Conversion Process to safely convert waste into fuels and industrial products²

Changing World Technologies

- Our Program: Waste to Oil
- Our Platform: *Renewable* and Alternative
- Our Patented Technology: *Renewable and Green*
- Our Production: *Renewable and Competitive*
- Our Customer Proposition: *Renewable and Compelling*

An immediate platform for a ready nation

- Renewable diesel production from waste
- Direct substitution for fossil fuels at competitive pricing
- Power and distribution from locally produced renewable diesel
- Strong strategic implications
 - Reduced logistic tail burden
 - Additional storage for critical assets food and weapons
 - Ready to use fuel

Mobile unit helps replenish fuel supply

Changing World Technologies

- Founded in 1997
- HQ (NY), R&D Center (PA), and Demonstration Facility (MO)
- Over \$100M of Private Equity and Government Grant Financing
- Developer of the Thermal Conversion Process (TCP)
 - Also Know as Thermal Depolymerization Process

What is TCP?

Thermal Conversion Process or (TCP) breaks down organic materials by using heat, pressure and water to produce oil and other co-products <u>www.changingworldtech.com</u>

The source that everyone is uncomfortable discussing Potential renewable diesel production from waste

Establishing waste often a matter of perspective. Definitions blurred, i.e. sludge is often called "biosolid", manures called nutrients and food waste is often animal feed

The refined oil markets in the United States...and worldwide

Thermal Conversion Process (TCP)

Four step process for conversion of organic waste into renewable diesel

Non-Combustion Conventional Equipment Feedstock Variability Scalability and Adaptable No Catalysts or Chemicals Relative Permitting Ease Small Footprint Energy Efficient Environmentally Friendly Valuable Products

Step 1: Preparation

Waste is prepared and mixed into a slurry

Step 2: Separation

Heat and pressure are applied, separating organic and inorganic materials in the process

Step 3: Conversion

Higher heat and pressure are applied, generating renewable diesel and co-products

Step 4: Collection

End-products stored separately until sale and distribution

Waste and low value streams

Two Concurrent Paths

Developing;

RAPID DIESEL
 DEPLOYMENT
 PLATFORM

UNITED STATES DEPARTMENT OF DEFENSE

Utilization;

 RENEWABLE DIESEL – Biobased synthetic fuel from waste

What waste can be consolidated and utilized ?

- Military waste to renewable diesel
 - Wet waste
 - Food scrapes, sludge and grease
 - Organic rich waste
 - Mixed plastics; PET, PVC, HDPE
 - Medical waste; bandages, infectious, sharps
 - Spent fuels, energetics
 - Maintenance oils, lubricants, solvents
 - Rubber and tires

The more people, the more waste

A liquid fuel concern...

Feedstock vulnerabilities Natural gas cost Commodities – Food versus Energy Logistical restrictions Railroad track wash-out

Jet ~72%, Ground ~18%, Marine ~8%

- Decentralized TCP facilities could provide alternative fuel
 - Diesel production proportionately distributed with population
 - Distributed diesel fuel facilities translates into less vulnerabilities
- Existing equipment runs on liquids (many more years)
- Power generation moving toward using high class fuels
 - JP-8 and JP-5 compatible (why add additional jet fuel demand)
 - Older technology more flexible in fuel use
- Competition from developing nations and airline industry
- Efficiencies and alternative sources will play role
 - And x-factor; the next big thing

Defense; will get their fuel, others will have to ration (save grease in WW)

THE TCP PROCESS

Major difference to other methods – is the TCP use of water and the multiple separation steps. The process preserves "C" as hydrocarbons versus the termination of "C" as CO2/Char for other destructive methods

•Thermal Conversion Process - TCP

•Utilization of water – slurry, heat transfer, solvent
•Multiple steps, mixed materials - Depolymerization

•High temperatures and pressures – Hydrolysis

•Scientific evidence supports pathogen destruction....

New York State Medical Waste Approval; Sharps, pathological, laboratory Process approved vs. apparatus approval

	Microbiological	Ethiday Report	
A hinder of the A sumption 32	amptine Anne collected of	verying reporter lates (5) of 80 microsec - 2 april	i ninatas -
Securit.A.	Legra Initial socialization	Log ₁₀ Final concentration	Leg rotaction
kenslaare* Kenslaare Kenslaare Kenslaare	1.000 1.400 1.400 1.400 1.400	8 0 0	17.28 17.78 17.78 17.29 17.29
NGOW1** NGOW2 NGOW2 NGOW2	7.69 7.69 7.69 7.69 7.69	0 0 0	17.09 17.09 17.09 17.09
5945971 5945973 5945973 5945974	7 00 7 10 7 50 7 50 7 50	8 0 0	17.88 17.88 17.00
Sold securit."	7.89	0	27.00
"Two point many produced for My The mean Reg ((Highes)	ros vero obraner a ha odsaterken terrae eduction for <u>Murphart</u>	normalisation of the processo and <u>because</u> in 11 sumplies o	and was T.A.R
 Mycellacie Mycellacie Mycellacie Mycellacie 	la terze Espenan ken la terze Espenan fina la terze Espenan fina	- 15 minutes, Bampla 1 - 30 minutes, Sample 1 - 45 minutes, Sample 1	
Complexiter:			
The Changing 1 achieved the fo	Sorid Technologies The Soving results	the Depidenter parties House	ini (TDP)
Sector Sector	elucition of Dacilian size	anthense the	
Per Lin borde mi un			

Feedstock sources and diverting waste from re-entry into food chain

TCP Addresses Contaminants

Animal Waste Contamination

- 27 million tons per year of animal processing waste in US
 - Processed by traditional renderers
 - Used in livestock feed, pet foods, soaps and other chemicals
- Feeding livestock animal waste identified as a potential cause for the spread of BSE or "mad cow" and other diseases
- TCP can safely destroy pathogens that cause diseases such as "mad cow"

Inorganic Hazardous Materials

- 34 million tons of mixed plastic, rubbers, synthetic carpet and foam waste generated in the United States are often land filled
- TCP safely eliminates PCBs and other potentially hazardous inorganic compounds from these waste streams

Feedstock Sources

U.S. Feedstock Market Size

Validated by Highly Respected Independent Authorities

NEPA

PA/MO/CO National Environmental Policy Act (NEPA) Assessments

Permitted TCP process to destroy medical infectious waste

1,000 TPD Animal Plant Energy Balance

OVERALL ENERGY EFFICIENCY = $85\%^{1}$

¹Calculated as Product Output /(Waste Input + Energy Input)

Significant Advantages Relative to Other Alternative Fuels

• Energy Efficient By Net Energy Balance¹

CWT Renewable Diesel	7.0
Ethanol	1.3
Conventional Biodiesel	3.2

- Utilizes "Non-Prime" Feedstock
 - Waste vs. corn vs. soybean vs. greases
- Able to Process Multiple Feedstocks
- Logistically Simpler
 - No rail / minimal transportation requirements
 - Co-location with waste source
 - Significantly smaller footprint
- Low Production Cost

Food Composition A mixed wet waste stream - provides opportunities

Complete Cooking Directions

Nutrition Facts Serving Size 4 oz. (112g) Servings Per Container varied Amount Per Serving Calories 170 Calories from Fat 90 % Daily Value* Total Fat 10g 15% Saturated Fat 3.5g 18% Cholesterol 70mg 23% Sodium 320mg 13% Total Carbohydrate Og 0% 0% **Dietary Fiber Og** Sugars Og 40% Protein 20g Vitamin C 0% Vitamin A 0% Calcium 0% Iron 4% *Percent Daily Values are based on a 2,000 calorie diet.

Hydrocarbon Fuels

Hydrocarbons contain hydrogen and carbon

Cetane, a 16-carbon straight chain hydrocarbon

Fats, proteins, carbohydrates A resource of Hydrocarbons

Processing Plastics

H₂O

Oxygen/chlorine bonds break during hydrolysis

Carbon-carbon bonds break during depolymerization

Polypropylene

A Life Cycle Look at End of Life Vehicle Recycling

Ex., Material Composition of SR

SR Composition	1	2
Hydrocarbon Polymers	62,7%	76,59%
Condensation Polymers	4,3%	0,73%
Chlorinated Polymers	6,2%	3,68%
Ligno-cellulosics	0,8%	3,58%
Tires	14,0%	0,00%
PCB's	0,01%	0,00%
Insoluble	1,99%	5,42%
Water	10,00%	10,00%

Shredder Residue

Hydrolyzed Oil

Distillation Cut	Industrial Uses	Temperature Range
Light Distillate	Gasoline; motor fuel	122-302F
Middle Distillate	Kerosene; jet fuel	302-482F
Diesel	Diesel fuel; heating oil	482-644F
Heavy Fuel Oil	Lubrication oil; industrial fuel	644-676F 31

TCP for Shredder Residue

- Two thermal processes for clean intermediate oil
 - Depolymerization
 - Medium temperature hydrothermal treatment
- CI, metals, debris separated from oil
 - PCB's destroyed
 - Mechanical separation for debris
 - Hydrothermal separation for CI & metals
- Clean hydrocarbon for use or upgrading
 - Oil can be upgraded in-house or at refinery

Big Picture

Waste to energy and reduction in landfill costs

<u>SR</u>

Oils

Output fractions of SR Only (1-ton)

Organic to oil and gas	30%	600 lbs	
Organic - fixed carbon	35%	700 lbs	
Scrap metals and dirt fines	20%	400 lbs	
Inorganic - metals,wood	4%	80 lbs	
Water	11%	220 lbs	Å.

These are estimates that depend on input. Use of output site specific Does not include motor oil

How to achieve military objectives and change...

- Supporting commercial ready technologies through cost sharing or preconstruction agreements
- Building smaller independent facilities
 - Avoid "Hub" mentality to limit vulnerability (Henry Hub, Trans-Alaska pipeline)
 - Limit supplies from hostile and unstable nations
- Helping develop appropriate construction modules for bases, with eye on mission support
- Storing and distributing synthetic fuels through normal logistical channels and expanding services
- Bridging the gap with renewable fuel suppliers and "refineries"
 - Procurement contracts in place
 - Local market quality guarantees blends, performance and environmental

Irrespective of energy advances we must still deal with waste Zero

Waste to Fuel A Paradigm Shift

- Eliminate waste
- Produce meaningful amounts of renewable diesel
- Reduce global warming dangers by reducing fossil fuel use
- Improve quality of life for military personnel

Thank you

Changing World Technologies, Inc www.changingworldtech.com