

Perchlorate Free Booby Trap Simulators

Mike Hartley Mark Motyka Gary Chen

Pyrotechnic Research & Technology Branch U.S. Army RDECOM-ARDEC Picatinny, NJ 07806-5000

May 24, 2007

Technology to the Warfighter Quicker

EALSP

RDECOM

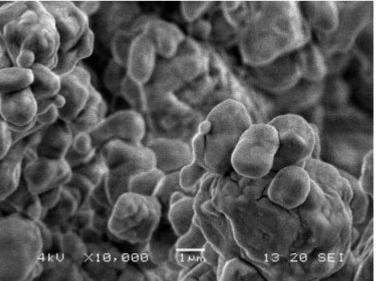
Maryalice Miller, Program Director Environmental Acquisition and Logistics Sustainment Program Research, Development & Engineering Command

Bill Ruppert, Ordnance Environmental Program Manager Hughes Associates, Inc.

Dr. Mark Johnson Dr. Karen Walker U.S. Army Center for Health Promotion and Preventive Medicine

Jim Wejsa, Branch Chief Picatinny Pyrotechnics R&T Branch

Booby Trap Simulators



- Teaches the installation, detection, and use of booby traps
- Instills caution in troops exposed to traps set by the enemy
- Family of Simulators
 - M117 Flash Bang
 - M118 Illumination
 - M119 Whistle

Potassium Perchlorate (KClO₄)

- Widely used in military munitions
 - Very strong, stable oxidizer
 - Low cost
 - Robust (propellant, flash, illumination, whistle)
 - Low water solubility
- Human thyroid impairment
- EPA recommended
 Drinking Water Equivalent
 Level 24.5 PPB

Project Goals

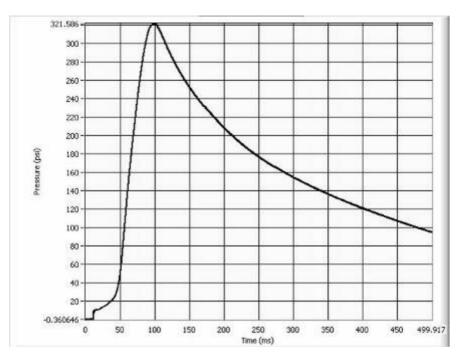
- Environmental Performance Parameters
 - Ingredients
 - Combustion Products
- Elimination of KCIO₄
- Meet current TDP performance parameters
- Transparency to Users
- Minimize manufacturing differences

M117 Composition Candidates

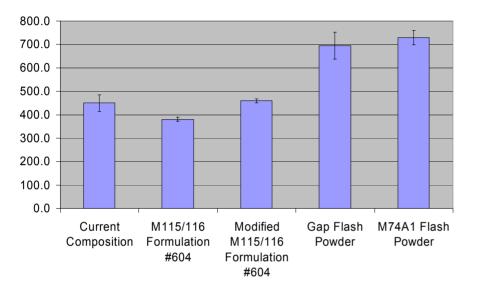
Target performance: Flash and 120dB Bang at 25.0±0.5ft

	Potassium Perchlorate
Current Composition	Antimony Sulphide
	Magnesium
M115/116	Potassium Nitrate Preblend
Formulation #604	Aluminum
	Sulfur
Madified M115/116	Potassium Nitrate Preblend
Modified M115/116 Formulation #604	Aluminum
F011101ati011 #004	Sulfur
	Potassium Nitrate Preblend
Gap Flash Powder	Aluminum
	GAP Energetic Binder
M74A1 Flash Powder	Black Powder
	Aluminum

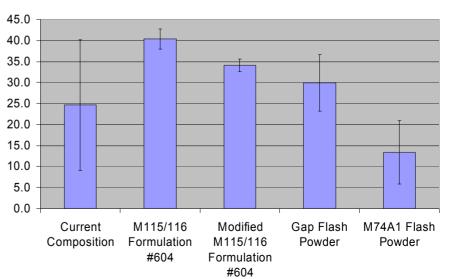
Potassium Nitrate Pre-blended


- Potassium Nitrate
- Boric Acid
- Cab-o-sil

Closed Bomb Testing



Maximum pressure Rise time (10% to peak pressure) Function time (t0 to peak pressure) Slope (10% to 90% of peak pressure)


Closed Bomb Data

Max pressure (psi)

Initially based load weights by equilibrating max pressure

Rise time shows the impulse of the composition

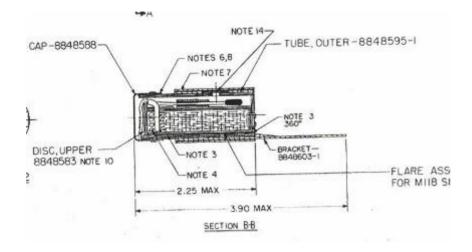
Rise time (ms)

M117 Overall Testing Results

Mix	Date	# of Rounds	unds Quick Match Mi	Mixing	Total Weight	Fill Volume	Sound	Sound (dB)		# of Flash
IWITA	Date		Length	Witzing	iotai weigiit		Avg	Stdev	# Failing	Delays
Baseline	4/4/2006	10	Std		2.50	72%	144.7	5.6	0	7
604	4/4/2006	5	Std		1.50	90%	71.4	65.9	4	5
604	4/4/2006	5	Std		1.20	70%	136.0	4.1	0	2
Modified 604	4/4/2006	5	Std	In round mixing	1.50	90%	135.9	9.4	1	1
Modified 604	4/4/2006	5	Std	10 mins @ 23 rpm Grucci	1.20	70%	139.0	6.0	0	4
GAP	4/4/2006	5	Std	Tumbler	1.50	90%	105.0	58.7	1	2
GAP	4/4/2006	5	Std		1.00	70%	78.7	71.9	2	1
M74A1	4/4/2006	5	Std		1.55	"= Pressure"	141.9	1.4	0	1
M74A1	4/4/2006	5	Std		1.78	90%	136.8	7.0	0	0
604	4/21/2006	15	Std	In round mixing	1.20	90%	118.6	8.8	9	12
Modified 604	4/21/2006	15	Std	30 mins @ 16	1.20	77%	116.7	6.9	10	10
Modified 604	4/21/2006	15	Std	rpm on New	1.35	85%	118.6	6.5	9	8
Modified 604	4/21/2006	15	1/2 length	M115/116 Tumbler	1.20	69%	129.7	9.5	3	4
M74A1	4/21/2006	15		Tumblet	1.20	72%	136.7	3.6	0	3
Baseline	5/10/2006	10	1/2 length	In round	2.50	72%	136.2	5.1	0	0
604	5/10/2006	10	1/2 length	Preblended	1.20	74%	136.4	2.3	0	2
Modified 604	5/10/2006	10	1/2 length	Preblended	1.20	79%	134.4	2.0	0	1
Modified 604	5/10/2006	10	1/2 length		1.20	69%	121.5	10.8	5	2
GAP	5/10/2006	10	1/2 length	In round mixing	1.20	87%	115.4	11.3	7	0
M74A1	5/10/2006	10	1/2 length	15 mins @ 23 rpm	1.20	66%	138.9	1.5	0	0
M74A1	5/10/2006	10	1/2 length	r	1.20	66%	138.8	2.3	0	1

M117 Videos

M117 Flash Delay



	M117 Baseline	Modified M115/116 Formulation #604	M74A1 Flash Powder
Sound Level	145dB (4/4/06) 136dB (5/10/06)	135dB	138dB
Load Weight	2.5 g	1.2g	1.2g
Standard Deviation	High	Low	Low
Comments	140dB max sound level	Pre-blended mixes are most reliable	No manufacturing differences

Next Step: limited quantity system demo

M118 Illuminating Simulator

- Target performance
 - 28 second flame duration (minimum)
 - Comparable light output (subjective)
- Current Composition
 - Potassium Perchlorate
 - Red Gum
 - Dextrin

Initial Compositions Candidates

Substitution of KNO₃/Sr(NO₃)₂

Ignition Issues

- Very Fast, low light output

M49 Trip flare – KNO₃/Al/W

- Ignition/Propagation Issues

M90 – KNO₃/C/Gum Arabic

- Very low light

M172 - NaNO₃/Mg

- Too Bright/Fast
- Mg out gassing

Iron Oxide – KNO₃/Iron Oxide/Epoxy

- ~40 sec burn time
- Good flame

White Flame – KNO₃/C/S

- Long burn time ~60s
- Inconsistent burn

- 2 potential formulation systems
 - White Flame (KNO₃/Charcoal/Sulfur)
 - RNX (KNO₃/Fe₂O₃/Epon 828-Epikure 3125)
- 8 iterations of testing
 - Meet burn times
 - Variation of % compositions
 - Increase light output
 - Silicon in white flame
 - Boron in RNX
 - Elimination of slag plug formation during burning

M118 In House Testing Results

Down-selected Candidates vs Baseline

Mix #	Description	Ingredient	Burn Time	Light Output	
	Baseline	KCIO4			
793	(4-1.25g inc 500#)	Red Gum	31.5s	~10Cd*s	
	(+ 1.20g inc 000#)	Dextrin			
		KNO3			
	White Flame 9	Sulfur			
830	(4-1.2g inc 750#)	Silicon	29.4s	39.20%	
	$(-1.29 \text{ me} 7.00\pi)$	Charcoal			
		VAAR			
		KNO3			
826	RNX-6	Fe2O3	28.0s	32.60%	
020	(4-1.0g inc 750#)	Epon 828	20.05	52.0070	
		Epikure 3125			
	KNO3				
847	RNX-17	Boron	32.1s	82.50%	
	(4-1.0g inc 750#)	Epon 828	52.15	02.0070	
		Epikure 3125			

Next Step: limited quantity system demo

M118 Videos on the Down-selected

		IDEO CALIBRATION	
RNX-6 28.0 s 3.9 cd	Baseline Mix 29.9 s 9.7 cd	RNX-17 32.1 s 8.0 cd	Baseline Mix 29.9 s 9.7 cd
	WF-9 29.4 s 4.1 cd	Baseline Mix 29.9 s 9.7 cd	

M119 Previous Lessons Learned

- Target performance
 - 2.5 to 5.0 second whistle
 - Sensitivity equal to or less than current composition (subjective)
 - Friction Test (RDX equivalent)
 - Steel : Detonates
 - Fiber : Unaffected
 - Impact (between RDX and TNT, BP is 16")
 - 12 inches
- Previous/proven whistle mixes
 - Potassium Nitrate : Potassium Picrate
 - Shock Sensitive
 - Potassium Chlorate : Gallic Acid
 - Friction Sensitive
 - Potassium Perchlorate : Sodium Salicylate (current)

Quick and Dirty Screen Testing

- Prototype (current cardboard housing)
- Mixes made to stoic. calculations
- Each candidate sample size limited to 2g
- 1 sample per mix
- No binder
- One pressing at 750# load 2s dwell time

Perchlorate Baseline
Major Work Needed
Work Still Needed
Functioning Whistle

	Potassium Benzoate	Sodium Salicylate	Gallic Acid	Terephthalic Acid	Potassium Hydrogen Phthalate
Potassium Perchlorate	Whistle Blew out bottom	whistle	whoosh	whoosh	weak whistle
Sodium Nitrate	fizzle	whoosh	whoosh	fizzle	whoosh
Potassium Nitrate	fizzle	whoosh	whoosh	fizzle	whoosh
Strontium Nitrate	fizzle	fizzle	fizzle	did not burn	fizzle
Cesium Nitrate	fizzle	fizzle	whoosh	fizzle	whoosh
Potassium Chlorate	Whistle	Weak whistle / explosion	Whistle	weak whistle	very weak whisIte loud whoosh

M119 Video on Initial Test

M119

Perchlorate Replacment

Quick and Dirty Testing

Current Potential Candidates

- Increase whistle quality: parametric testing
 - Modify particle size of fuel
 - Add catalyst/additive to mix
 - Adjust mix to get correct burn time
- Add binder to mix
- Establish friction, ESD, and impact sensitivity data
- Future Candidates
 - Continue literature research
 - Evaluate other Benzoic Acid derivative fuels
 - Characterize fuel and oxidizer particle sizes
 - Experiment with low explosive fuels (high oxygen or nitrogen fuels)

- **Challenge** Research and develop perchlorate-free, environmentally benign mix replacements for the M117/M118/M119 pyrotechnic simulators
- RDT&E stage testing

Data available?

- Individual components
 - Chem/Phys Properties some (relatively benign)
 - Tox Benchmarks needed for some compounds

Data gaps

- Products of combustion (for some compounds)
- **Issues** Some issues binders/plasticizers; may be minimal when proportions/quantities are compared.

*Overall program very successful in reducing environmental risks; with additional improvements made since last IPR:

Fate & Transport

- Chlorate ion is regulated in groundwater
 - 7 ppm (Maine)
 - 800 ppm (California)

Toxicology

- Exposed groups likely to be soldiers, workers, and human and ecological collaterals.
- Issues exist for:
 - Phthalates chemical of concern
 - Ecological data absent for some substances

M117	Persistence	Transport	Combustion Products	Human Health	Ecologic Health	Data Gaps
Aluminum						
Black Powder						
Cab-O-Sil						
Boric Acid						
GAP Energetic Binder						
Potassium Nitrate						
Sulfur						

Likely Benign
Possible Problem
Probable Problem
Unknown

Environmental Health Assessment

M118	Persistence	Transport	Combustion Products	Human Health	Ecologic Health	Data Gaps
Boron						
Charcoal						
Epikure 3125™		Log Kow>3				
Epon 828™						
Potassium Nitrate						
Silicon						
Sulfur						
VAAR						

Likely Benign
Possible Problem
Probable Problem
Unknown

Environmental Health Assessment

M119	Persistence	Transport	Combustion Products	Human Health	Ecologic Health	Data Gaps
Gallic Acid						
Potassium Benzoate						
Potassium Chlorate						
Potassium Hydrogen Phthalate						
Potassium Nitrate						
Red Gum						
Red Iron Oxide						
Sodium Nitrate						
Sodium Salicylate						
Terephthalic Acid						

Likely Benign
Possible Problem
Probable Problem
Unknown

Summary

- PM-Close Combat Systems has incorporated funding into their strategic plan
- FY2007-FY2008
 - Completion of Formulation Research and Development
 - M117
 - Complete System Demo on 2 proposed compositions
 - M118
 - Complete System Demo on 3 proposed compositions
 - M119
 - 1 composition shows promise
 - Additional compositions are being formulated
- FY2009-FY2010
 - Complete Energetic Material Qualification
 - Complete Final Hazard Classification
 - Complete Engineering Change Proposal
- FY2011
 - Production begins with New Perchlorate Free Compositions
 - Eliminate the problem before it becomes a source

Questions???

- Contact Picatinny Pyrotechnics R&T Branch
 - Mike Hartley
 - mike.hartley@us.amry.mil
 - 973-724-4659
 - Mark Motyka
 - mark.motyka@us.army.mil
 - 973-724-7192
 - Gary Chen
 - gary.chen@us.army.mil
 - 973-724-2663