

A Strategy for Identifying and Evaluating Munitions Constituents on Ranges

23 March 2006

Ivan Boyer, Ph.D., D.A.B.T. (Mitretek Systems) Steven Strausbauch (AFIOH)

Introduction

- Strategy
 - Identify Munitions constituents (MCs) on Test and Training Ranges
 - Evaluate MCs as Constituents of Concern (COCs) and Emerging Constituents (ECs)
 - Document Critical Information and Technical Gaps
 Preventing Evaluation of MCs as COCs and ECs
- Website
 - Display Information Generated Through Implementation of the Strategy
 - Facilitate Gathering and Evaluating New Information and Identifying Information gaps

Premise

Informed, Cost-Effective Range Management Depends on Knowledge of:

- Chemicals Potentially Released from Munitions
 - Tested
 - Used
 - Disposed
- Regulatory Requirements
- Fate and Transport
- Toxicology and Risk Assessment
- Analytical Chemistry

Definitions

• Munitions Constituents (MCs)

- Chemicals Originating from Munitions
- Ingredients: Explosive and Non-Explosive
- Products: Emissions and Breakdown
- Constituents of Concern (COCs)
 - MCs in Air, Soil, or Water on Range
 - Potentially Exceeding Standards or Posing Threat
- Emerging Constituents (ECs)
 - MCs that may Soon be Recognized as Widespread COCs
 - New Occurrence, Toxicology, Risk Assessment, Fate and Transport Information
 - New Standards or Analytical Methods

Purpose

- Develop Comprehensive, Systematic Approach to Answer Two Major Questions:
 - What Should We Sample for on Ranges?
 - What are the Likely Emerging Constituents?

Basic Elements

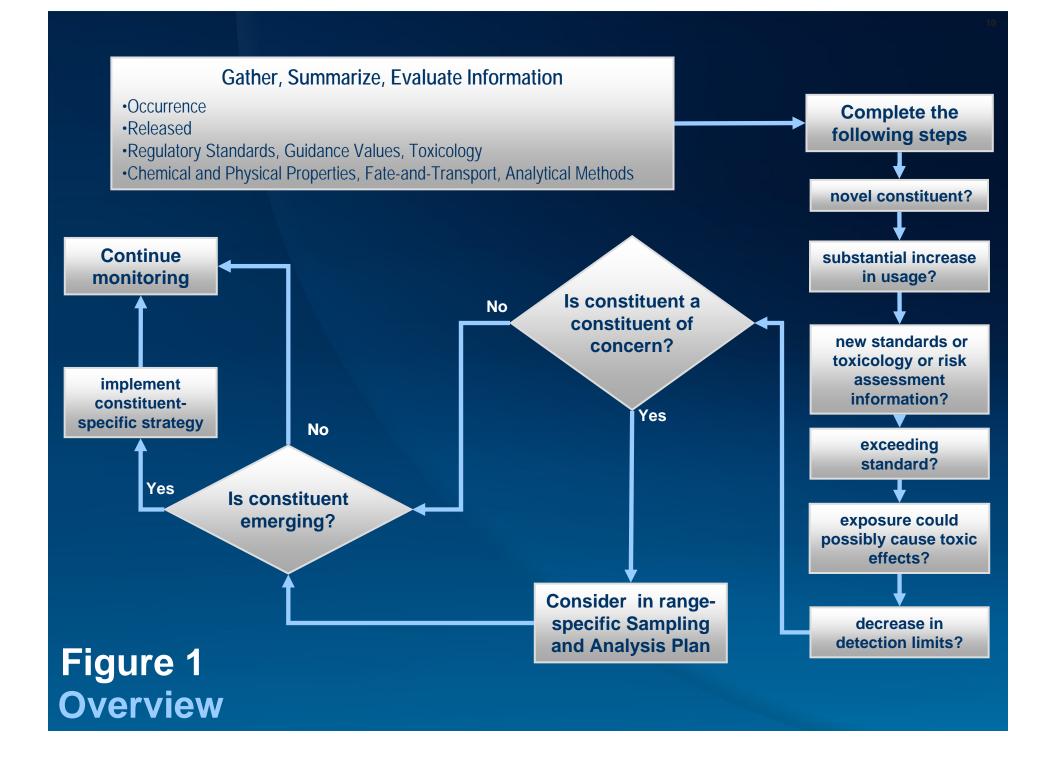
- Identify and Quantify Munitions Tested, Used, Treated on Range
- Identify Explosive, Delay, Fuel and Other Chemical Mixtures in Munitions
- Identify Ingredients of the Mixtures (Including Major Impurities)
- Pursue Information Sources for Munitions not Addressed in MIDAS (e.g. Commercial Manufacturers)

Basic Elements (Continued)

- Identify Major Breakdown Products of Each Constituent
 - Explosion
 - Combustion
 - Degradation
- Estimate Amounts of Constituents Potentially Released
 - Types and Numbers of Munitions
 - Amounts of Constituents in Mixtures in the Munitions
 - Estimated Dud Rates
 - Estimated Low-Order Detonation Rates

Basic Elements (Continued)

- Determine Regulatory Status of Each Chemical
 - Standards
 - Guidance
- Characterize the Knowledge Base for Each Chemical
 - Toxicology & Risk Assessment
 - Chemical & Physical Properties
 - Fate & Transport
 - Analytical Methods



Special Steps for Emerging Constituents

- Address Reasons Why a Constituent may Emerge
 - New Constituent Used in New or Modified Munitions
 - Old Constituent Used in Much Greater Quantities
 - New Regulatory Standards
 - New Toxicological or Risk Assessment Information
 - New Analytical Method with Much Lower Detection Limits

Start Determine Occurrence of Munitions or 1	Range	3	4
Munitions: Use on Aircraft Identify Munitions Associated with Aircraft Used for Training Purposes on Range Consider, for Example: Aircraft Equipment (e.g., Ejection Seats; Missile Release Systems) • Aircraft Guns • Chaff • Cluster Bombs • Flares • Fuzes • Guided Bombs • Incendiary Bombs • Mines • Missiles • Penetrator Bombs • Practice Bombs • Rocket System Components • Sub-Munitions	Munitions: Past and PresentIdentify, Quantify and Characterize Testing and Use of Munitions on RangeConsider, for Example: on Range• Testing Method • Quantity Tested • Initial Operational Capability • Past Use • Current Use • Current Inventory • Production Status • Production Rate • Quantity Planned • Dud Rate • Low-Order Detonation Rate	Munitions: New and DevelopingIdentify Munitions Being Modified or Developed and Currently Tested or May Be Tested or Used on RangeConsider, for Example: • Research and Development Status • Testing Method • Quantity Tested • Initial Operational Capability • Quantity Planned	Summarize Information List Munitions and Estimates of Numbers of Munitions Tested or Used on Range List New and Developing Munitions Currently Tested or May Be Tested or Used on Range in the Future

Figure 2

Examples

- Illustrate Execution of the Strategy
- Highlight Critical Information and Technical Gaps
- Support Recommendations
- Munition: BLU-110B/B (1,000-lb Penetrator)
 - Explosive: PBXN-109 (400 lbs)
 - Constituent: Isophorone Diisocyanate (4 lbs)

Examples (Continued)

- Table 1. Munitions Used in Air Force Aircraft
- Table 2. Key Information on Munitions Used by the Air Force
- Table 3. Ingredients of PBXN-109 in BLU-110B/B
- Table 4. Regulatory Standards and Guidance
- Table 5. Toxicology and Risk Assessment Information
- Table 6. Properties of PBXN-109 Ingredients
- Table 7. Preliminary Evaluation of Isophorone Diisocyanate (IPDI)

Bomb	Name or Description		Aircraft																			
		<u>A-1</u>	<u>A-7</u>	<u>A-10</u>	<u>A-37</u>	A-100	<u>B-1</u>	<u>B-2</u>	<u>B-29</u>	<u>B-36</u>	<u>B-52</u>	<u>C-130</u>	<u>F-4</u>	<u>F-5</u>	<u>F-15</u>	<u>F-16</u>	<u>F-22</u>	<u>F-35</u>	<u>F-105</u>	<u>F-111</u>	<u>F-117</u>	
<u>BLU-107</u>	Durandal		x											x		x				x		
<u>BLU-109</u>	HAVE VOID						x	x			x			x	x	x					x	
<u>BLU-110</u>							x	x			х			x	x	x						
<u>BLU-111</u>							x	x			x			x	x	x		x				
<u>BLU-113</u>	"Desert Storm Special"							x			x				x							
<u>BLU-116</u>	AUP			x										x	x	x					x	
<u>BLU-117</u>			x	x			x	x			x		x		x	x		x		x	x	

Table 2-A Bombs (Continued)									
Bomb/ Bomblet	Туре	Weight	Status/ Quantity Current <i>Planned</i>	IOC	Substances of Interest (Weight)	Notes			
<u>BLU-107</u>	Penetrator Bomb	450 lb		1988	HE (330 lb)	Fires "runway buster" rocket booster that penetrates runway surface, and delayed explosion buckles runway			
<u>BLU-108/B</u>	AT Bomblet		Production	1992	Octol, Cyclotol, PBXN-107, or PBXW- 11?	•Contains four "hockey puck" shaped skeet infrared sensing smart warheads, each with 1 lb Copper explosively formed penetrator (EFP) •6 BLU-108/B in AGM145/B (2001) and 10 in CBU-97/B •Bomblet of choice for the AGM-154B (JSOW) •Capable of integration into AGM-158 (JSSAM)			
<u>BLU-109</u>	Penetrator Bomb	2,000 lb	Production		•BLU-109/B: Tritonal 80/20 Mix (535 lb) •BLU-109A/B: PBXN-109 (524 lb)	•Detailed Information in MIDAS •Used in AGM-130, GBU-24 and GBU-31(V)4/B			
BLU-109(D-1)/B	Practice	1,955 lb			Inert Filler E Composition (555 lb)	Detailed Information in MIDAS			
<u>BLU-110</u>	Penetrator Bomb	992 lb			PBXN-109 (385 or 395 lb)	•Detailed Information in MIDAS for BLU-110A/B and BLU- 110B/B •BLU-110A/B has somewhat less PBXN-109 than BLU- 110B/B			
<u>BLU-111</u>	Penetrator Bomb	517 lb			PBXN-109 (189 lb)	Detailed Information in MIDAS for BLU-111A/B			
<u>BLU-113</u>	Penetrator Bomb	4,700 lb	Inventory (300)	1991	Tritonal (645 lb)	•Warhead on GBU-28 •Candidate Eglin Steel Alloy (ES-1) casing			
<u>BLU-114</u>	"Blackout"/"Soft" Bomblet				Chemically Treated/Coated Carbon Graphite filaments or strands	Used in CBU-97 ("Blackout Bomb")			
<u>BLU-116/B</u>	Penetrator Bomb	1,700 lb			PBXN-109 (240 lb)	•AUP case made of Nickel-Cobalt Steel Alloy (9430M or Air Force 1410) •Used in GBU-24 C/B •Compatible with AGM-130, GBU-15, GBU-24, GBU-27 •"Twin" of BLU-109/B •Can contain Tritonal?			
<u>BLU-117</u>	Penetrator Bomb	1,970 lb			PBXN-109 (930 lb)	•Detailed Information in MIDAS for BLU-117A/B •Used in the GBU-10 Paveway II			
<u>BLU-118</u>	Incendiary Bomb	500 lb	Obsolete	Viet Nam	Napalm				
<u>BLU-118/B</u>	Guided HTI Bomb	~1975 lb		2002	PBXIH-135 (Navy only?) (~560 lb)	•Air Force is pursuing Solid Fuel Air Thermobarics/Explosive using Hydrocarbon such as Gasoline or Methane and Aluminum Particles •Candidate thermobaric explosives included PBXIH-135, HAS-13, and SFAE (solid fuel air explosive) •Compatible with AGM-130, GBU-15, GBU-24			

Table 3 Ingredients of PBXN-109 in BLU-110B/B								
Ingredient (Abbreviation) [CA Name]	CASRN	Formula	Structure	Percentage of Total PBXN-109 by Weight	Amount in BLU- 110B/B			
2,2' Methylenebis(4-methyl-6-t- butylphenol) (AO) [Phenol, 2,2'-methylenebis[6-(1,1- dimethylethyl)-4-methyl- (9CI)]	119-47-1	C ₂₃ H ₃₂ O ₂	OH t-Bu HO Me t-Bu	0.1%	0.4 lb			
Aluminum [Aluminum (8Cl,9Cl)]	7429-90-5	AI	Not Applicable	20%	79 lb			
Dioctyl adipate (DA) [Hexanedioic acid, bis(2- ethylhexyl) ester (9Cl)]	103-23-1	C ₂₂ H ₄₂ O ₄	$ \begin{array}{c c} 0 & 0 & \text{Et} \\ & \parallel & \parallel & \parallel \\ CH_2 - 0 - C - (CF_2)_4 - C - 0 - CH_2 - CH - Bu - n \\ & \parallel \\ & \text{Et} - CH - Bu - n \end{array} $	7.35%	29 lb			
Isophorone diisocyanate (IPDI) [Cyclohexane, 5-isocyanato-1- (isocyanatomethyl)-1,3,3-trimethyl- (9Cl)]	4098-71-9	C ₁₂ H ₁₈ N ₂ O ₂	OCN CH2-NCO Me Me	0.95%	3.8 lb			
N,N'-Bis(2- hydroxyethyl)dimethylhydantoi n (HEDMH) [2,4-Imidazolidinedione, 1,3-Bis(2- hydroxyethyl)-5,5-dimethyl-(9Cl)]	26850-24-8	C ₉ H ₁₆ N ₂ O ₄	$CH_2 - CH_2 - OH$ \downarrow O Me N Me $CH_2 - CH_2 - OH$	0.26%	1 lb			
Polybutadiene (PBD) [1,3-Butadiene, homopolymer (9Cl)]	9003-17-2 Component: 106-99-0	(C ₄ H ₆) _x	Component : H_2C CH CH CH CH 2	7.35%	29 lb			

Table 4-A Regulatory Standards and Guidance for PBXN-109 Ingredients										
Ingredient	CASRN	ACGIH TLV	ATSDR MRL	ATSDR PLHS	САА НАР	CAA NAAQS	CAA Section 602	Cal ECIR	Cal Prop 65	CHPPM ITF-40
AI	7429-90-5	X		Х						
AO	119-47-1									
DA	103-23-1			Х						
HEDMH	26850-24-8									
IPDI	4098-71-9	X								
PBD	9003-17-2									
RDX	121-82-4	X	X	Х						
ТРВ	603-33-8									
Table 4-A Regulatory Standards and Guidance for PBXN-109 Ingredients (continued)										
Table 4-A	Regulatory	Standa	rds and C	Guidance	e for P	BXN-109	Ingredier	nts (cor	ntinued)
Table 4-A	Regulatory CASRN	Standar CLC FSL	rds and (CWA PPL	Guidanco EPA DWSHA	e for P NIOSH REL	BXN-109 OSHA PEL	Ingredier RAIS FS RSG	<mark>sc (cor</mark> SC POP	ntinued SDWA CCL) SDWA CCL2
		CLC		EPA	NIOSH	OSHA	RAIS	SC	SDWA	SDWA
Ingredient	CASRN	CLC FSL		EPA	NIOSH REL	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2
Ingredient Al	CASRN 7429-90-5	CLC FSL		EPA	NIOSH REL	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2
Ingredient Al AO	CASRN 7429-90-5 119-47-1	CLC FSL		EPA DWSHA	NIOSH REL	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2
IngredientAIAODA	CASRN 7429-90-5 119-47-1 103-23-1	CLC FSL		EPA DWSHA	NIOSH REL	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2
Ingredient AI AO DA HEDMH	CASRN 7429-90-5 119-47-1 103-23-1 26850-24-8	CLC FSL		EPA DWSHA	NIOSH REL X	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2
Ingredient AI AO DA HEDMH IPDI	CASRN 7429-90-5 119-47-1 103-23-1 26850-24-8 4098-71-9	CLC FSL		EPA DWSHA	NIOSH REL X	OSHA PEL	RAIS FS RSG	SC	SDWA CCL	SDWA CCL2

Table 5-A T	Table 5-A Toxicology and Risk Assessment Information for PBXN-109 Ingredients									
Ingredient	CASRN	ATSDR TP	Cal TCD	CHPPM Draft TE	CHPPM WTA	EPA ECOTOX	EPA IRIS	EPA IRIS 04	EPA IRIS SLR	
AI	7429-90-5	X				X				
AO	119-47-1									
DA	103-23-1					X	Х	X		
HEDMH	26850-24-8									
IPDI	4098-71-9									
PBD	9003-17-2									
RDX	121-82-4	X		Х	X	Х	Х	X		
ТРВ	603-33-8									

Table 5-A Toxicology and Risk Assessment Information for PBXN-109 Ingredients (continued)

				3							
Ingredient	CASRN	EPA Region 3	EPA Region 9	IARC	NTP ICCEC	NPT ROC	ORNL TS	RAIS EB	RAIS TV		
AI	7429-90-5	X	X	X			X	X			
AO	119-47-1			X							
DA	103-23-1	X	X								
HEDMH	26850-24-8										
IPDI	4098-71-9										
PBD	9003-17-2										
RDX	121-82-4	X	X				X	X	Х		
ТРВ	603-33-8										

Ingredient	CASRN		Properties	Notes					
IPDI	4098-71-9	Property •BCF •BP •BP •EoV •FP •H acceptors •H donors •K _{oc} •logD •logP •MS •MW •VP	Value/Condition $2080 @ pH 1-10$ $162-163^{\circ}C @ 14 Torr$ $158-159^{\circ}C @ 15 Torr$ $286.9\pm13.0^{\circ}C @ 760 Torr$ $52.60\pm3.0 kJ/mol$ $116.0\pm45.3^{\circ}C$ 40 $8250 @ pH 1-10$ $4.67 @ pH 1-10$ 4.668 ± 0.710 Sparingly Soluble @ pH 1-10 222.28 $2.57 x 10^{-3} Torr @ 25^{\circ}C$	Note (1) (2) (3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	 (1) Calculated using Advanced Chemistry Development (ACD/Labs) Software Solaris V4.67 (2004 ACD/Labs) (2) Schmitt, Karl; US 3352913 1967 (3) Schmitt, Karl; DE 1202785 1965 				

Table 6 Example: Properties of PBXN-109 Ingredients (Continued)

Innovative Technology in the Public Interest

The Way Forward

- Develop and Verify Comprehensive Database (Tables 1-3)
 - Specific Munitions of Specific Weapons Systems
 - Chemical Mixtures in Munitions
 - Ingredients and Impurities of Mixtures
 - Detonation, Combustion and Degradation Products
- Develop Comprehensive Information Summaries (Tables 4-6)
 - Regulatory Information
 - Toxicology and Risk Assessment Information
 - Chemical and Physical Properties
 - Fate and Transport Information
 - Analytical Methods

The Way Forward (Continued)

- Develop Detailed, Specific Criteria and Guidance
 - "Adequate," "Potential," "Substantial," "Widespread,"
 "Persistent"
 - Rules of Thumb: Army Risk Assessment Modeling System; CHEMFATE
 - Professional Judgment
- Develop Evaluation Reports and Fact Sheets
 - Address Each Constituent that may be Released from Munitions Tested, Used or Treated on Ranges
 - Evaluation Reports Modeled after Table 7

Table 7 Example: Pr	Table 7 Example: Preliminary Evaluation of Isophorone Diisocyanate (IPDI)							
Factor	Results							
	BLU-110B/B is a 992-pound penetrator that has been used on the B-1, B-2, B-52, F-5, F-15, and F-16 aircraft (Table 1-B). BLU-110B/B contains 395 pounds PBXN-109, an "insensitive" explosive mixture developed by the Navy. PBXN-109 is used, or has been used, in several other Air Force munitions, including AGM-86/D (prior to 1991), AGM-114/M, BLU-116/B, GBU-12, and MK-83: •Tables 2-A and 2-B							
Occurrence	•Air Force 2004-2005 Updated Weapons File: https://peonet.eglin.af.mil/weapons There are about 3.8 pounds of IPDI in the PBXN-109 in each BLU-110B/B (Table 3). Information on the testing, usage (for practice), low-order detonation and dud rates of BLU-110B/B is not sufficient to estimate the amount IPDI that may have been, or could be, released on Air Force ranges. However, most, if not all, of the IPDI is expected to be destroyed in high-order detonations, some IPDI may be released to the environment in low-order detonations, and all of the IPDI may eventually be released from duds if left in place. Usage of this large modern bomb for practice on ranges is expected to be limited, low-order detonations and duds are expected to be rare, leaving duds in place for long periods is unlikely, and testing is expected to be restricted to a small number of ranges.							
Regulatory Standards/ Guidance	The ACGIH TLV and NIOSH REL for IPDI is 0.005 ppm in air (8-hour time-weighted average); NIOSH also recommends 0.02 ppm as the 15-minute short-term inhalation exposure limit, and provides a "skin notation:" •Table 4 •ACGIH Threshold Limit Values and Biological Exposure Limits (1999) • <u>http://www.cdc.gov/niosh/pel88/4098-71.html</u> • <u>http://www.cdc.gov/niosh/pel88/4098-71.html</u> No other guidance levels and no regulatory standards were found in sources examined. However, IPDI is on the list of Extremely Hazardous Substances mandated by Section 302 of the Emergency Planning Right-to-Know Act of 1986 (EPCRA): The EPCRA Reportable Quantity (RQ) for release incidents is 100 lbs and the Threshold Planning Quantity (TPQ) is 500 lbs: • <u>http://www.safehometowns.org/appendix_a.pdf</u>							
	• • http://www.sarenometowns.org/appendix_a.pdi • http://www.epa.gov/fedrgstr/EPA-TRI/2003/September/Day-08/tri22770.htm							

Table 7 Example: Preliminary Evaluation of Isophorone Diisocyanate (IPDI) (Continued)

Factor	Results
Toxicology and Risk Assessment	No regulatory toxicology or toxicology guidance information was found for IPDI in the sources examined (Table 5). However, twenty three (23) "adverse effect, including toxicity" references were found using SciFinder. These studies address primarily the occupation-related allergic contact dermatitis and respiratory irritation and allergy (asthma) caused by IPDI. A report found in a broader Internet search suggests that aromatic isocyanates (including IPDI) may be carcinogens (<u>http://www.epa.gov/dfe/pubs/auto/profile/diisopro.pdf</u>), based on analogy to toluene diisocyanate and 3,3'-dimethoxybenzidine-4,4'-diisocyanate. The latter were found to be carcinogenic in rodents in two-year repeated-dose studies by the oral exposure route.
Properties	IPDI is sparingly soluble in water, and is expected to have a significant potential for bioconcentration in the environment (Table 6).
Fate and Transport	No relevant references for "the fate and transport of IPDI in soil, water or air" were found using SciFinder. A broader Internet search revealed that IPDI decomposes on burning to produce "toxic fumes including nitrogen oxides, hydrogen cyanide, carbon monoxide, carbon dioxide." Also, IPDI "reacts slowly with water at room temperature, vigorously at high temperature, to produce toxic and corrosive substances:" http://www.inchem.org/documents/icsc/icsc/eics0499.htm http://www.inchem.org/documents/icsc/icsc/eics0499.htm http://www.state.nj.us/health/eoh/rtkweb/1068.pdf http://www.epa.gov/dfe/pubs/auto/profile/diisopro.pdf). Hydrolysis of the N=C=O can occur within hours, although the low water solubility of IPDI will reduce rate of hydrolysis in the environment. In the absence of hydrolysis, sorption to soils and sediments will be substantial. The hydrolysis or sorption of IPDI will substantially limit or prevent the migration of IPDI will vary depending on the moieties formed. IPDI is not expected to degrade in the atmosphere – The removal of IPDI from air occurs by washout or dry deposition. Volatilization of IPDI is negligible. The volatilization of IPDI from surface waters would be expected to take years. The information available was not sufficient to identify comprehensively the likely products of detonation, combustion, or hydrolysis of IPDI.
Analytical Methods	Methods for measuring concentrations in air to determine occupational exposures were found in a broad Internet search: • <u>http://www.osha.gov/dts/chemicalsampling/data/CH_248100.html</u> • <u>http://www.irsst.qc.ca/en/_RSST4098-71-9.html</u> However, no methods were found for measuring IPDI concentrations in soil or water in a SciFinder search or a broader Internet search.

Table 7 Example: Preliminary Evaluation of Isophorone Diisocyanate (IPDI) (Continued)

Торіс	Results
Conclusions	Preliminary evaluation indicates little or no release of IPDI from BLU-110B/B on Air Force ranges. Any releases from the testing or usage of BLU-110B/B are unlikely to exceed the EPCRA RQ (100 lbs.). IPDI may be carcinogenic. However, the small quantities of IPDI that may be released from BLU-110B/Bs would be highly sorbed to soils and sediments or hydrolyzed in water. Thus, IPDI has little potential to contaminate groundwater or surface water, which therefore represent incomplete or negligible exposure pathways for potential human receptors. Inhalation and dermal exposures to IPDI sorbed to airborne surface soil particles are possible, but are unlikely to be significant. IPDI has the potential to bioconcentrate in the environment. However, the small quantities of IPDI that may be released from BLU-110B/Bs on ranges and the limited potential for IPDI transport from ranges suggests that the bioconcentration of IPDI represents an unlike threat to potential human or ecological receptors. The information available is not sufficient to identify all of the likely detonation, combustion, hydrolysis or other degradation products of IPDI in the environment. However, the small quantities of IPDI that may be released from BLU-110B/Bs on ranges suggests that the breakdown products of IPDI are unlikely threats to human or ecological receptors. The information available is not sufficient to identify all of the likely detonation, combustion, hydrolysis or other degradation products of IPDI in the environment. However, the small quantities of IPDI that may be released from BLU-110B/Bs on ranges suggests that the breakdown products of IPDI are unlikely threats to human or ecological receptors. The available information does not indicate that IPDI is a likely emerging constituent. This is because substantial and widespread release of IPDI is not expected from the testing and usage of BLU-110B/B on Air Force ranges, and no new analytical methods were found for IPDI in the preliminary search conducted for this exercise.
Recommendations	 Conduct a comprehensive search for information on the testing, usage, low-order-detonation and dud rates of BLU-110B/B on Air Force ranges to characterize the likely occurrence of IPDI with greater certainty. Conduct a comprehensive literature search and continue to monitor the scientific literature on the toxicity of IPDI to enable early detection of emerging issues (e.g., a demonstration of the carcinogenic potential of IPDI) and a pro-active approach to addressing these issues. Conduct a comprehensive literature search and continue to monitor the scientific literature on analytical methods under development for measuring IPDI in ambient air, soil and water to enable the early detection of emerging issues (e.g., a demonstrations of IPDI in groundwater at ranges), and a pro-active approach to addressing these issues. Conduct a comprehensive search of the scientific literature to identify the likely products of the detonation, combustion, hydrolysis, and biodegradation of IPDI in the environment to enable complete assessment of the potential for IPDI on ranges to threaten human health or the environment.

Summary of Strategy

- Strategy for Identifying and Evaluating Munitions Constituents on Air Force Ranges
- Process is:
 - Comprehensive
 - Systematic
 - Fully Documented
- Solid Foundation for:
 - Developing Technically Defensible, Credible Range Assessment Studies
 - Meeting Requirements of DOD Directive 4715.11
 - Addressing Emerging Constituents Proactively

Website

• Purpose

- Display Information Generated Through Implementation of the Strategy
- Facilitate Gathering and Evaluating New Information and Identifying Information gaps
- User Roles
 - Reviewer
 - Range Administrator
 - Content Administrator
 - Analyst

- User Administrator
- Security Administrator
- Super Administrator

Web Site

ESOH Service Center - Microsoft Internet Explorer provid	led by Comcast	×
<u> </u>		
📙 🖙 Back 🔹 🤿 💉 🔯 🖄 🖓 Search 🛛 😹 Favorites 🔅	🖲 Media 🧭 🛃 ᢖ 🗹 🗐 🛛 🚳 📖 🛛	
Address 🕘 http://muncon.mitretek.org/MCBase/User_login_2.asp	x	💌 🤗 Go 🛛 Links 🖉 🔁 👻
Google - Search - Ø	🛛 🚿 峇 549 blocked 🛛 🌱 Check 🕞 🤾 AutoLink 👻 🗐 AutoF	🛛 🛃 Options 🤌
BROOKS CITY-BASE	Munitions Constituents	
	AIR Force Institute for Operational Health	
	Munitions Constituents Login	
	Enter User Name:	
	Password:	
	Login	
		FEEDBACK
Contact Information: AFIOH San Antonio, Texas 78235 Directory Assistance: (210) 536-5454, DSN 240-5454 Toll Free: 1-888-232-ESOH (3764)		Site last modified on 14 Oct 05 by the AFIOH WebTeam Technical Help: (210) 538-2484, DSN 240-2484 Contact us through our <u>ESOH Service Center</u> at Toll Free 1-888-232-ESOH (3764) Commercial (210) 536-5454 DSN 240-5464 FAX (210) 536-3228
C Done		Eccal intranet

Innovative Technology in the Public Interest

User Functions

- Range Administrator (e.g., Range Operator, Base Historian)
 - Enter/Edit Information and Run Reports on a Specified set of Ranges
 - Some may have Access to Information for all Ranges
 - Source of Range-Based Information
- Content Administrator (e.g., Weapons Expert, Chemist)
 - Enter/Edit Information Across all Ranges and Services
 - Weapons Systems, Munitions, MCs
- Analyst (e.g., Chemist, Hydrogeologist, Risk Assessor)
 - Run Reports for MCs Across all Ranges and Services
 - Evaluate each MC as a COC or EC using Decision-Tree

User Roles

Range-Specific User can Download:

- Likely COCs Based on Weapons Systems and Munitions Tested or Used on Range
 - Point-of-Departure for Selection of COCs to Assess or Monitor
 - Subset of Likely COCs from Website
- Pertinent Regulatory Standards and Toxicity Values
- Validated Analytical Methods for Likely COCs
- Fact Sheets Explaining why each MC on Range is or is not a Likely COC

User Roles (continued)

Analyst can Develop:

- High-Level Evaluations of MCs Based on Information on the Website
- Recommendations to Guide Development of Research Projects and Programs for COCs and ECs
- Fact Sheets for Use by Range Managers, Acquisitions Personnel, Policy Makers, *etc...*

Summary of Website

- Founded on the Strategy
- Tool for:
 - Facilitating Implementation of the Strategy
 - Gathering and Organizing Pertinent Information
 - Making Information Accessible to Defined Users
 - Identifying Critical Information and Technical Gaps
 - Guide Development of Research Projects and Programs
- Secure Access to Information and Functions

Comments and Questions

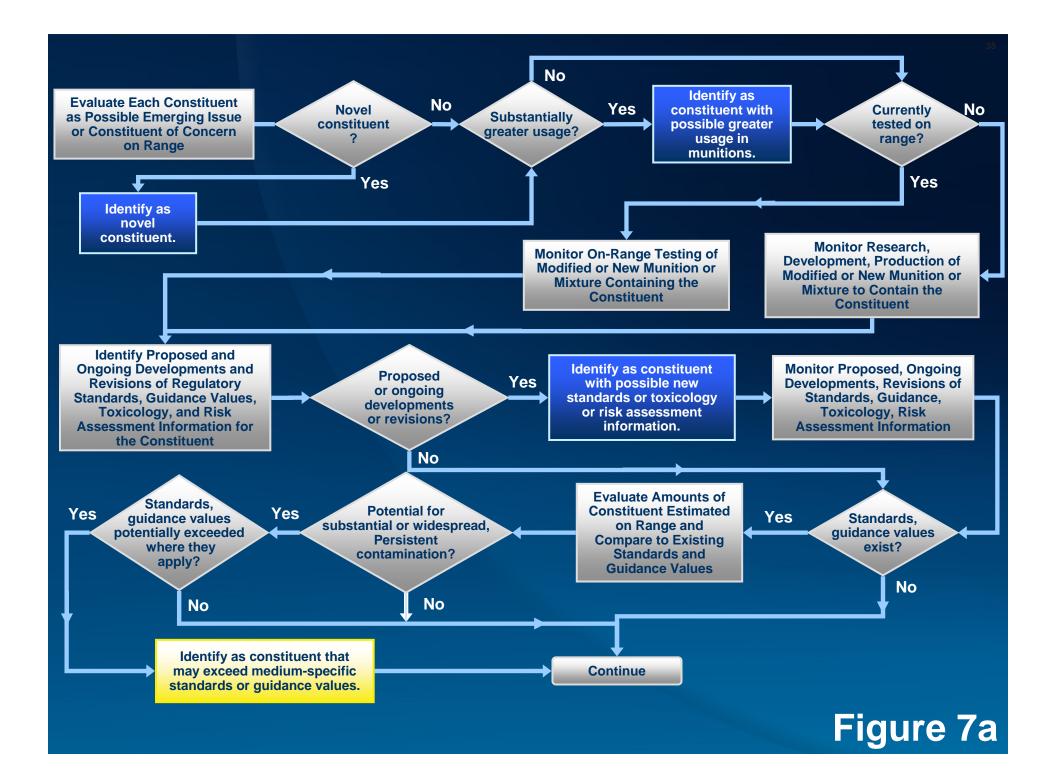
• Focus-Group Meeting

- Input on Future Development of the Website
- Maximize Usability and Usefulness to Range Managers and Operators
- Contact

Dr. Ivan Boyer Mitretek Systems 3150 Fairview Park Drive South Falls Church, VA 22042 703-610-2117 iboyer@mitretek.org Mr. Steven Strausbauch Air Force Institute for Operational Health 2513 Kennedy Circle, Bldg. 180 Brooks City Base, TX, 78235 210-536-6134 steven.strausbauch@brooks.af.mil

Acknowledgments

- Ms. Michele Indermark (AF/A7CV)
- Mr. Cornell Long (AFIOH)
- Dr. Brian Howard (AFIOH)
- Dr. George Bizzigotti (Mitretek Systems)
- Ms. Dianna Gimon (Mitretek Systems)
- Mr. Drew Rak (Mitretek Systems)

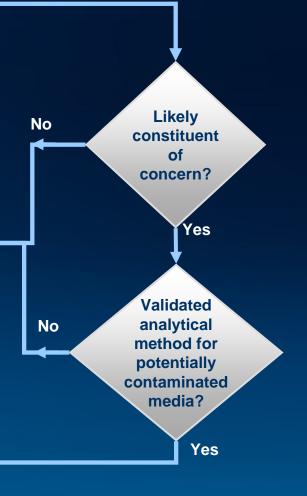


Backup Material

Innovative Technology in the Public Interest

Continuing from

Continue


Re-Evaluate Each Chemical Identified as a Possible Constituent of Concern on Range (See report for further explanation.)

Constituent Not Recommended for Sampling and Analysis

- Summarize Salient Points, Uncertainties, Conclusions, and Recommendations of Overall Evaluation
- Explain Why Samples Need Not Be Analyzed for Constituent at this Time
- Recommend Types and Sources of Information to Monitor to Address the Uncertainties and Identify Possible Changes in Status of Constituent

Constituent Recommended for Sampling

- Summarize Salient Points, Uncertainties, Conclusions, and Recommendations of Overall Evaluation
- Explain Why Samples Should be Collected and Analyzed for Constituent on Range
- Specify Medium or Media to Sample and Where to Sample for Constituent

Figure 8

Continuing from

Re-Evaluate each Chemical Identified as Possible Emerging Constituent (See report for further explanation.)

Constituent Not Emerging

No

Likely emerging

constituent?

Figure 9

Yes

- Summarize Salient Points, Uncertainties, Conclusions, and Recommendations of Overall Evaluation
- Explain Why Constituent Need Not Be Considered Emerging at this Time
- Recommend Types and Sources of Information to Monitor to Address the Uncertainties and Identify Possible Changes in Status of Constituent

Continue monitoring development of pertinent new information on constituent

> Develop and implement constituent-specific strategy to address emerging constituent

Emerging Constituent

- Summarize Salient Points, Uncertainties, Conclusions, and Recommendations of Overall Evaluation
- Explain Constituent Should Be Considered Emerging
- Recommend Strategies for Addressing Constituent as an Emerging Constituent on Ranges

Purpose

Perspective 1

Develop Comprehensive, Systematic Process to:

- Identify MCs on Ranges
 - May Have Been Released (Past)
 - May Be Released (Current and Future)
- Evaluate MCs as Potential COCs and ECs
 - Identify Likely COCs for Range Assessments
 - Identify Likely ECs to Address Proactively
- Identify Critical Information and Technical Gaps:
 - Occurrence
 - Standards & Guidance

- Chemical & Physical Properties
- Fate & Transport
- Toxicology & Risk Assessment Analytical Methods

Acronyms and Abbreviations for Table 2

Acronyms			Abbreviations				
ADW:	Agent Defeat Warhead	EGBU:	Enhanced Guided Bomb Unit	LOCAAS:	Low Cost Autonomous Attack System	~:	Approximately
AFX:	Air Force Explosive	EMD:	Engineering Manufacture and	LRIP:	Low Rate Initial Production	CL:	Class
AGM:	Air-to-Ground Missile	FAE:	Development Fuel-Air Explosive	MIDAS:	Munitions Items Disposition Action System	CL-20:	Hexanitrohexaazaisowurtzitane
AM:	Anti-Materiel	GBU:	Guided Bomb Unit	MMC:	Miniature Munition Capability	CS:	o-Chlorobenzylmalononitrile (tear gas)
APAM:	Anti-Personnel Anti-Materiel	GP:	General Purpose	oz:	Ounces	gl:	Gallons
AT:	Anti-Tank	GPS:	Global Positioning System	PBX:	Plastic/Polymer-Bonded Explosive	gm:	Grams
AUP:	Advanced Unitary Penetrator	GSX:	Gelled-Slurry Explosive	PBXIH:	Plastic/Polymer-Bonded Explosive, Indian Head	gr:	Grains
BDU:	Bomb, Dummy Unit	HAS:		PBXN:	Plastic/Polymer-Bonded Explosive, Navy	lb:	Pounds
BLU:	Bomb Live Unit	HE:	High Explosive	PBXW:		MK:	Mark
C&B:	Chemical and Biological	HMX:	High Melting Explosive	PDU:	Printed Data for Dispensers		
CBU: CBW:	Cluster Bomb Unit Chemical and Biological Weapon	HNS: HTI:	Hexanitrostilbine High-Temperature Incendiary	PETN: RDX:	Pentaerythrite Tetranitrate Royal Demolition/Dutch Explosive		
CEB:	Combined Effects Bomb	HTPB:	Hydroxyl-Terminated Polybutadiene	SBS:	Small Bomb System		
COPC:	Constituent of Potential Concern	IOC:	Initial Operational Capability	SDB:	Small-Diameter Bomb		
CS:	o-Chlorobenzylmalononitrile (tear gas)	IR:	Infrared	SDD:	System Development and Demonstration		
CXU:	Charge Spotting Bomb Unit	JASSM:	Joint Air to Surface Stand-Off Missile	SFAE:	Solid Fuel-Air Explosive		
DSHTW:	Direct Strike Hard Target Weapon	JDAM:	Joint Direct Attack Munition	SFW:	Sensor Fused Weapon		
DST:	Destructor	JSOW:	Joint Stand-Off Weapon	SSB:	Small smart bomb		
DTRA:	Defense Threat Reduction Agency	JSSAM:	Joint Air to Surface Standoff Missile	SUU:	Suspended Utility Unit		
E/B:	Enhanced Bomb	LBU:	Leaflet Bomb Unit	TNT:	2,4,6-Trinitrotoluene		= No Information Found or Information Incomplete
EFP:	Explosively Formed Penetrator	LGB:	Laser Guided Bomb	TV/IR:	Video/Infrared Camera		or Questionable
		LGTR:	Laser Guided Training Round	WWII:	World War II		
		MOAB:	Massive Ordnance Air Blast Bomb	PBX:	Plastic/Polymer-Bonded Explosive		

References for Table 2

GlobalSecurity.org: http://www.globalsecurity.org/military/systems/index.html

Air Force Link: <u>http://www.af.mil/factsheets/</u>

Air Force 2004-2005 Updated Weapons File: https://peonet.eglin.af.mil/weapons

Federation of American Scientists (FAS): http://www.fas.org/man/dod-101/sys/ac/equip/index.html

Aerospaceweb Aircraft Museum: http://www.aerospaceweb.org/aircraft/

MIDAS: Munitions Items Disposition Action System, Defense Ammunition Center, US Army

PACAF Instruction 21-202: http://www.e-publishing.af.mil/pubfiles/pacaf/21/pacafi21-202/pacafi21-202.pdf

Various Internet search results using Google Browser

Venik's Aviation, Aviation Bombs: USA: http://216.239.39.104/search?q=cache:N4_3NFTHsxIJ:www.aeronautics.ru/archive/reference/Aviation_Bombs/USA.htm+BLU-17+weight&hl=en

Innovative Technology in the Public Interest

Table 4A and 4B - Abbreviations / Acronyms for PBXN-109 Ingredients

AI:	Aluminum
AO:	Anti-Oxidant
DA:	Dioctyl adipate
HEDMH:	N,N'-Bis(2-hydroxyethyl)dimethylhydantoin
IPDI:	Isophorone diisocyanate
PBD:	Polybutadiene
RDX:	Royal Demolition/Dutch Explosive
TPB	Triphopylhismyth
ТРВ	Triphenylbismuth = No Standards or Guidance for Ingredient

Table 4A and 4B - Abbreviations / Acronyms for Regulatory and Guidance Lists

ACGIH TLV: ATSDR MRL: ATSDR PLHS:	American Conference of Governmental Industrial Hygienists - Threshold Limit Values Agency for Toxic Substance and Disease Registry – Minimal Risk Levels Agency for Toxic Substance and Disease Registry - Priority List of Hazardous Substances
CAA HAP:	Clean Air Act - Hazardous Air Pollutants
CAA NAAQS:	Clean Air Act – National Ambient Air Quality Standards
CAA Section 602:	Clean Air Act - Section 602
Cal ECIR:	California Environmental Protection Agency - Emergent Chemical Information Request
Cal Prop 65:	California Environmental Protection Agency - Proposition 65
CHPPM ITF-40:	Center for Health Promotion and Preventive Medicine – International Task Force-40
CLC FSL:	CleanupLevels.com – Federal Screening Levels
CWA PPL:	Clean Water Act - Priority Pollutants List
EPA DWSHA:	US Environmental Protection Agency - Drinking Water Standards and Health Advisories
NIOSH REL:	National Institute for Occupational Health and Safety – Recommended Exposure Limits
OSHA PEL:	Occupational Safety and Health Administration -Permissible Exposure Limits
RAIS FS RSG:	Risk Assessment Information System – Federal and State Regulatory Requirements and Guidance
SC POP:	Stockholm Convention - Persistent Organic Pollutants
SDWA CCL:	Safe Drinking Water Act - Candidate Contaminant List
SDWA CCL2:	Safe Drinking Water Act - Candidate Contaminant List 2
SDWA NDWR:	Safe Drinking Water Act - National Drinking Water Regulations
SNR HEEC:	Second National Report - Human Exposure to Environmental Chemicals
USGS:	US Geological Survey

Table 5A and 5B - Abbreviations / Acronyms for PBXN-109 Ingredients

AI:	Aluminum
AO:	Anti-Oxidant
DA:	Dioctyl adipate
HEDMH:	N,N'-Bis(2-
	hydroxyethyl)dimethylhydantoin
IPDI:	Isophorone diisocyanate
PBD:	Polybutadiene
RDX:	Royal Demolition/Dutch Explosive
ТРВ	Triphenylbismuth
	= No Information for Ingredient

Table 5A and 5B - Abbreviations / Acronyms for Regulatory and Guidance Lists

ATSDR TP: Cal TCD: CHPPM Draft TE: CHPPM WTA: EPA ECOTOX: EPA IRIS: EPA IRIS 04:	Agency for Toxic Substance and Disease Registry –Toxicity Profiles California Environmental Protection Agency - Toxicity Criteria Database Center for Health Promotion and Preventive Medicine – Draft Toxicity Evaluations Center for Health Promotion and Preventive Medicine – Wildlife Toxicity Assessments US Environmental Protection Agency – Ecological Toxicity Database US Environmental Protection Agency – Integrated Risk Information System US Environmental Protection Agency – Integrated Risk Information System 2004 Update
EPA IRIS SLR:	US Environmental Protection Agency – Integrated Risk Information System Screening-Level Review
EPA Region 3: EPA Region 9: IARC:	US Environmental Protection Agency – Region 3 US Environmental Protection Agency - Region 9 International Agency for Research on Cancer National Toxicology Program - Interagency Committee for Chemical Evaluation and
NTP ICCEC:	Coordination
NPT ROC: ORNL TS: RAIS EB: RAIS TV:	National Toxicology Program - Report on Carcinogens Oak Ridge National Laboratory – Toxicity Summaries Risk Assessment Information System – Ecological Benchmarks Risk Assessment Information System – Toxicity Values

The Way Forward (Continued)

• Consult Reliable, Accurate Information Sources, such as:

- Range Operators and Managers
- Air Force Weapons Experts
- MIDAS
- Technical Manuals/Orders
- Army Armament Research and Development Command (ARDC)
- Air Force Research Laboratory (AFRL)
- Army Defense Ammunition Center (DAC)
- Strategic and Environmental Research and Development Program (SERDP)
- State and Federal Regulatory Agencies
- Non-Government Organizations
- Army CHPPM
- Chemical Abstracts Service

Strategy Document

- **Title:** *Strategy for Identifying and Evaluating Munitions Constituents and Emerging Constituents on Air Force Ranges*
- Date: 31 January 2005
- Mitretek Systems
- Air Force Institute for Operational Health (AFIOH)

