Biological Warfare Defense

DARPA

Dr. Mildred A. Donlon Program Manager, Defense Advanced Research Projects Agency Defense Sciences Office 3701 North Fairfax Drive Arlington, VA 22203-1714 <u>mildonlon@darpa.mil</u>

http://www.darpa.mil/dso

DARPA Organization

DARPA Accomplishments

Harvesting Biology for Revolutionary Technologies at DARPA

Biology is a major driver for new main and physics

 Interrogate and manipulate biological systems with modern physical devices

 Analyze, model, simulate & design with a new arsenal of math and computational tools

$$S_{\text{unreg}} = f'_{\text{unreg}}(R^*) = -k_{\text{deg}}$$

$$S_{auto} = f'_{auto}(R^*) = -\frac{nk_p P k_I a k_r}{(1+k_p P + k_r R^*)^2} - k_{deg}$$

Defense Sciences Office (DSO)

Information about solicitations sponsored by the Defense Sciences Office, including Proposer Information Pamphlets, is also available from the <u>DSO Solicitations Web Page</u>.

- Title: A -- Defense Sciences Research and Technology
- Announcement #: BAA01-42
- FedBizOpps Reference: September 4, 2001
- Modification: July 15, 2002
- Modification: August 12, 2002
- Closing Date: December 15, 2002
- Title: A -- Defense Sciences Research and Technology
- Special Focus Area: Brain Machine Interfaces
- Announcement #: BAA01-42, Addendum 1
- FedBizOpps Reference: September 17, 2001
- Closing Date: See Primary Solicitation
- Title: A -- Defense Sciences Research and Technology
- Special Focus Area: Biological Input/Output Systems (BIOS)
- Announcement #: BAA01-42, Addendum 2
- FedBizOpps Reference: October 17, 2001
- Closing Date: See Primary Solicitation

DARPA Role in Science and Technology

DARPA Role in Science and Technology

Update: The Trend Lines

- The growing threat of BW is generated by three disturbing trends:
 - The number of players possessing biological weapons or seeking to acquire a biological warfare <u>capability is increasing</u>.
 - Biological agents with <u>increasing lethality</u> are being developed.
 - <u>Detection</u> of BW programs and the acquisition of BW-related capabilities is <u>difficult</u>.
- It happened here

National Intelligence Council Report: The Biological Warfare Threat, Jan 2001.

Protecting Human Assets

Novel Tools (Devices, Models, Databases, Algorithms) for High Performance Biological/Chemical Sensing and Propering

Challenges

• Experimental/Theoretical Characterization of the elements of a Bio-Molecular System :

> -Molecular Recognition Elements (sensitivity, selectivity and speed)

-Signal Transduction Elements (Signal Amplication with High SNR)

-Bio-Fluidic Transport Elements (High Efficiency, Low Power Pumping, Valving and Mixing Methods)

• Demonstration of device models on design of Bio-Microsystems

Interface Between Biology and Micro/Nano-Technology

Novel Processes, Experimental Methods, Computational Models and Design Tools that significantly improve speed, sensitivity, specificity and efficiency of chemical/biological processing and analysis Simbiosv

M O S A I Molecular Observation, Spectroscopy And Imaging using

Techbase program to make plug & play (PnP) biocircuits that enable engineering of organisms for use as sentinel devices

Activity Based Detection: A Conceptual Framework Alan Rudolph, DSO

Cellular or Tissue activity can be used as diagnostic or to engineer markers for sensors

Advanced Diagnostics...Why We Need It

Early symptoms of many BW agents are flu-like and indistinguishable

Signatures of Exposure

WRAIR, Georgetown University, Stanford, Umea Sweden, APL

Program Goal: Determine cell signatures of early exposure to BW pathogens and develop rapid signature diagnostics

Concept: Generate differential expression profiles and cDNA libraries from cells after exposure. Identify differentially expressed transcripts. Create gene reporter elements for diagnostic tests

Unconventional Pathogen Countermeasures John Carney, DSO

Idea: Develop broad spectrum technologies that effectively counter potential BW threats to the US military and civilians

Technical Challenges:

- Develop therapeutics effective against all known and unknown (e.g. engineered) BW pathogens
- Develop effective multivalent vaccines with broad efficacy versus industry standard one bug one drug
- Enhance Immune system in order to eliminate the need for vaccines

Broad-Spectrum Approaches

- 5th year of funding
- USAMRIID technology transition partner (10 transitions to date, 6 under discussion)
- Possible development of 5 new pharmacological therapeutics

- Technology:
 - Virtual Impaction (aerodynamic sorting and concentrating)
 - Developer: MesoSystems
- Key Features:
 - Low power
 - Compact and versatile
 - Wet or dry particle collection
 - Wet collection
 - Aerodynamic pre-filtering
 - Particle pre-concentrator for triggers
 - Mass-producible (low cost)
- Commercialization in progress

Bioni™ UV trigger by Pacific Scientific Instruments

Continuous Air Sampler for Lockheed Martin

- Technology:
 - MesoSystems Rotating Impactor combined with SRI International's UPT Immunoassay
 - Field exposure quantification for the individual
- Key Features:
 - Low power; field operation
 - Compact and light
 - 15-30 liters/min flow rate
 - 40% overall efficiency from Air
 → Disk → Liquid sample
- Commercialization status
 - Laboratory testing in 2002
 - Field trials in 2003

Personal Water Purification Systems

MIOX Disinfection Pen/Cap

Reverse Osmosis (RO) Pump / Advanced Membranes

- Tech Approach:
 - Effective mixed-oxidant chemistry from table salt -
 - Smart electrochemical cell and circuit
 - Miniaturization of mechanical filters and purifiers
 - Pen/pump combo treats any water source
 - Low cost to produce
 - Working turbidity filtration issues

- New Generation Hydration System
 - Lightweight/reduced footprint for "on-themove" operation (backpack)
 - Produces Gatorade-like nutrient drink from contaminated water via FO bag
 - MIOX pen/cap inactivates even extremely resistant microorganisms by 99.99%

Immune Building Demonstration

Implement, optimize, and demonstrate a full-scale building protection system at a US military site

- FY03: Site selection
- FY04: System design and testing; on-site characterization

• FY05: Demonstration

Integrated Systems Experimentation Team

Fort McClellan, Anniston, AL

Gage-Babcock
 & Associates

Auburn University

Battel

Battelle

Putting Technology To Work

Ensco, Inc.

Fidelity
 Engineering

Carn

Contact: James E. Risser, risserj@battelle.org

Biosensor Technologies

Upconverting Phosphor Technology

(UPT)

-SRI International (Menlo Park, CA) Handheld Biosensor

(DARE) DARPA Antibody Replacement

Enhancement Team

<u>Identifying</u> <u>Technology</u>

-University of Alabama Cri -Archemix

- -University of Texas at Austin
- -Polytechnic University
- -University of Missouri
- -Auburn University

MAGIChip[™]

Micro Array of Gel-Immobilized Compounds-University of Washington-Argonne National Laboratory (ANL)-JHU/APL- Food and Drug Administration (FDA)

Ion-channel Biosensor Team

-Auburn University -Sandia National Laboratory -Rush-Presbyterian -Polytechnic University

