

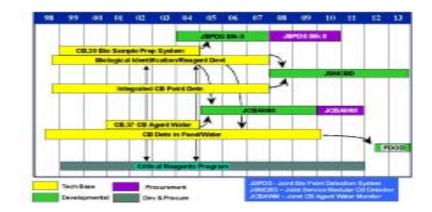
Chemical Biological Defense Science and Technology

Mr. J. H. Zarzycki CBD Reliance Panel Chair and Technical Director Edgewood Chemical Biological Center

Outline

CB Reliance

- Drivers of S&T Investment
- Program Plans and Structure


CB Non-Medical S&T

- Taxonomy
- Thrust Areas and Opportunities

Drivers of S&T Program Investment

Joint Future Operational Capabilities

- Developed and priority-ranked by user representatives
- Describe operational needs in general technical terms
- Address major operational functional capabilities of Contamination Avoidance, Battle Management, Individual Protection, Restoration Capability, Collective Protection
- Provide overarching strategic guidance
- Mature development program
 - Identifies target dates / funding to focus technology transitions
 - Temporary unfunding of many mature development programs in 04-09 POM
 - Opportunity to ensure technology maturity determines transition dates

FY2003 Joint Future Operational Capabilities

1 Battlespace Info Mgmt	11 Equipment/Facilities/Area Decon
2 Medical Prophylaxes	12 Transportable Col Protection
3 Early Warning	13 Fixed Site Col Protection
4 Point Detection	14 Mobile Collective Protection
5 Battlespace Analysis/Planning	15 Personnel/Casualty Decon
6 Respiratory Ind Protection	
7 Med/Environ Surveillance	
8 Percutaneous Ind Protection	
9 Med Treatment	
10 Med Diagnosis	

CBD Program Plans

Defense Technology Area Plan (DTAP) Chapter II – <u>CB Defense</u>

- DTAP provides comprehensive view of DoD S&T program goals and strategies, capturing all high-priority S&T objectives (via Defense Technology Objectives)
 - 2 program areas Medical & Non-Medical
 - 6 technology sub areas
 - 28 DTOs

Joint Warfighting S&T Plan (JWSTP)

- JWSTP focuses on Service- and CINC-identified Joint Warfighting Capability Objectives and the alignment of DoD S&T program against those objectives
 - Chapter XII Counter Proliferation of WMD
 - 4 DTOs I.06, I.07, I.08, I.09
 - Chapter XIII <u>Combating Terrorism</u>
 - 1 DTO L.07

DTO Policy

- DTOs are high priority S&T efforts
- A DTO states:
 - What specific technology advancements will be developed and/or demonstrated
 - By what Fiscal Year
 - For what specific benefit
 - Stated quantitatively against one or two metrics solving what technical barrier
- DTO policy: DTOs are the building blocks of the Defense S&T Program. They provide a means for:
 - DoD S&T planning and programming
 - S&T program defense
 - S&T program articulation
 - Fulfilling GPRA requirements
- The DUSD (S&T) will review the Department's S&T Program to ensure that key funded efforts are included as DTOs

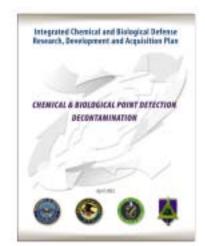
CBD S&T Program Strategy

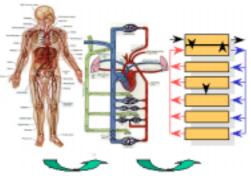
Overall goal:

 Develop and integrate technologies from the six sub areas into a comprehensive defense shield, such that the use of chemical or biological agents in the battlespace has little impact on operational effectiveness

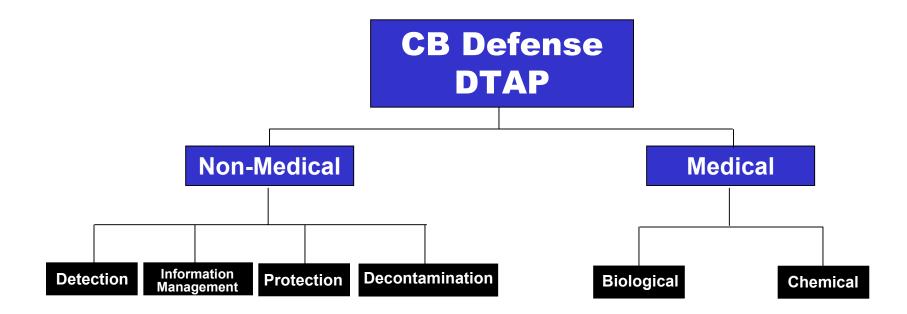
• Areas of emphasis:

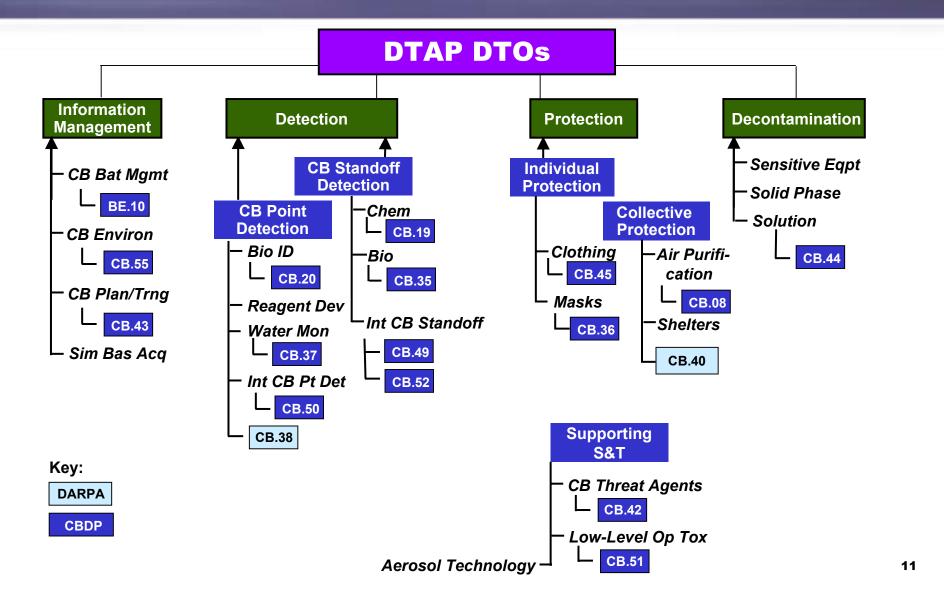
- Address the Growing Threat from Proliferation and Genetic Engineering
- Improve Situational Awareness:
 - Better sensors and decision tools
 - Network sensors both CB and non-CB
 - Fuse sensor data with decision tools


Fig 2 AN/USQ 139 Seismic sensor


CBD S&T Program Strategy (Continued)

• Areas of emphasis (Continued):


- Reduce the Logistics Burden:
 - Single application tools; e.g., C&B sensor, all agent decon
 - Regenerative filtration
 - Vaccines
 - Broad acting medical countermeasures; e.g., multiagent vaccines, and therapeutics
- Improved Understanding of the Threat Itself:
 - Agent Environmental Fate
 - Low level toxicological effects
 - Aerosol physics
- Leveraging Investments Across National and International CBD Programs


CBD S&T: Overall Architecture

DoD CBDP Non-Medical Science and Technology Program

Non-Medical S&T Program Taxonomy

Non-Med CB S&T Funding Summary

NMTB DTO picture as of 12-02	FY03		FY04		FY05		FY06		FY07	
	6.2 6.3		6.2	6.3	6.2	6.3	6.2	6.3	6.2	6.3
Total DTAP DTOs by PE	40.3 3.3		39.3	10.0	32.2	17.8	18.0	10.6	5.5	0.0
Total DTAP DTOs	43.6		49.3		50.0		28.6		5.5	
Total Program 6.2 + 6.3	96.0		88.0		86.5		82.9		86.2	
Fraction Program in DTOs	45	5.4	56	6.0	57	7.7	34	l.5	6.	4

FY03 funding profile						
In-house OGA Industry Academia						
49%	15%	29%	7%			

CB Standoff Detection Thrusts

Chemical Standoff Detection

Objectives: Develop and demonstrate passive and active concepts for remote detection, identification, ranging, and mapping of chemical clouds in all physical forms

JS Warning ID Lidar

Bio Standoff Detection

Objectives: Develop and demonstrate concepts for remote detection, identification, ranging, and mapping of biological particulate clouds

Merge capabilities into a single small platform

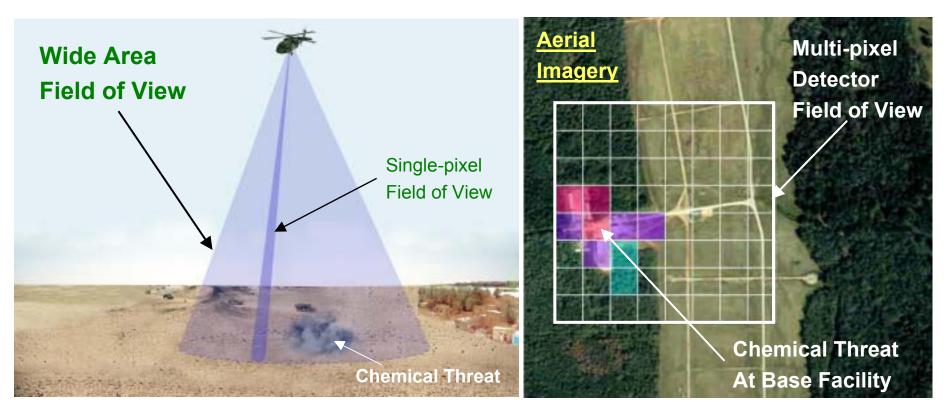
single sensor platform

Integrated

CB Standoff Detection

concepts for remote detection, identification,

biological clouds in all physical forms with a


Objectives: Develop and demonstrate

ranging, and mapping of chemical and

?

DTO CB.53 Wide Area Reconnaissance for Chemical Agents

Wide Area Detection Concept

- Wide field of view covers more area than single-pixel sensors
- Snapshot of scene with minimal pointing / scanning

DTO CB.19 Chemical Imaging Sensor

- Accomplishments: 16-pixel Chemical Imaging Sensor running at 360 scans/sec with real time processing of data demonstrated
 - New imaging sensor built to meet DTO objectives
 - New algorithms specific to imaging spectrometers

- Lightweight (less than 5 lbs.)
- Extremely small (5"x3"x2")

Current Configuration of the Chemical Imaging Sensor

DTO CB 35 Standoff Biological Aerosol Detection

Concept

Target cloud detected at source of event against ambient background

DTO CB52 Detection of CB Contaminated Surfaces

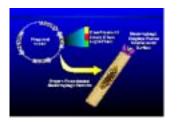
Functional Concept

- Multi-platform applicability
- Goal of 0.5 g/m² set by PM-NBC Recon

CB Point Detection Thrusts

Biological Identification

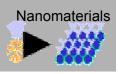
Objectives: Develop fully automated sample prep and analysis systems for unattended monitoring of air samples; transition FY04 to JBPDS


Auto DNA prep

Auto mass spec prep

Reagent Development

Objectives: Develop improved reagent candidates for implementation in fielded


and developmental identifiers via Critical **Reagent Program**

Detection in Water/Food

Objectives: Provide the capability to detect, identify, and quantify chemical and biological contamination in potable water

Integrated Chem/Bio Point Detection

Objectives: Develop small, hand-size detectors to identify chemical agents and detect, discriminate biological agents

Optical fluorescence

DTO CB37 CB Agent Water Monitor

New areas of funding

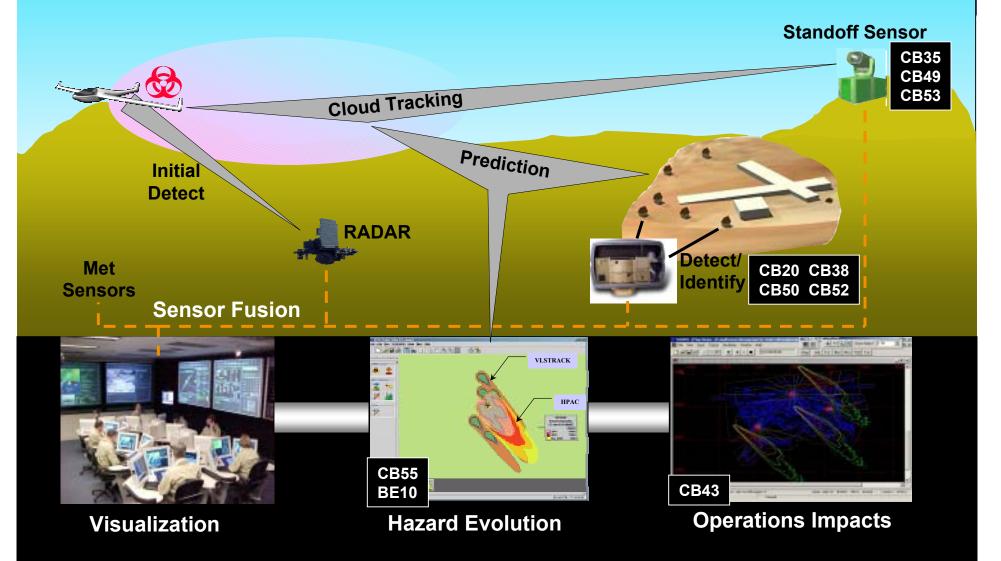
- Sample capture, concentration and extraction
- Optimized, new, novel capture probes
- New signal processing, disparate sensor suite approaches
- New, novel sensing technologies and approaches
- Testing and validation methodologies
- All have a commercial life after DoD
 - CDC, EPA, American Water Works Association Research Foundation, Drinking Water Industry

Military field water

Air Force

Reps from EPA and AWWARF

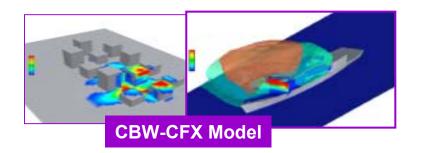
Reps from CHPPM, CEHR, Sandia, EPA



USGS 19

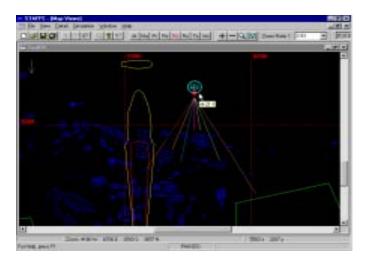
DTO CB.50 Lightweight Integrated CB Detection

The Situational Awareness Picture


Information Systems Technology Thrusts

CB Battle Management

Objective: Develop sensor/data fusion and threat visualization architectures, as well as communications interfaces with command/ control assets



Objective: Develop models to track evolution of CB threats from vapor, liquid, and solid agents across range of scales from individual to theater

CB Planning/Analysis

Objectives: Develop models to describe effects of CBW events on operations and improve planning for CBW events

Simulation Based Acquisition

Objective: Models supporting development of CBD equipment

Individual Protection Thrusts

Clothing

Objectives: Develop garments that provide increased CB agent protection and decreased impediment to wearer's performance

Challenges:

- Self-Detoxification
- Membranes/fabric interfaces
- Durability

<u>Masks</u>

Objectives: Demonstrate concepts that enhance respiratory and head protection against CB agents

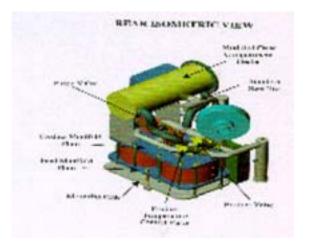
Challenges:

- Adsorbent materials
- End-of-service life indication
- TIC/TIM removal

Future Warrior System

- Advanced lens system with improved vision, field-of-view, chemical resistance, and durability. (NGGPM/NGAM)
- Next generation mask system with improved protection, reduced weight and bulk, reduced thermal burden, and improved system integration. (NGGPM/NGAM)
- ESLI with improved user confidence and safety and reduced logistics. (JSGPM & NGGPM/NGAM)
- Advanced filter system with improved protection and reduced breathing resistance. (NGGPM/NGAM)

- Improved system integration with suit, mask, helmet, gloves, boots, body armor, weapons, etc. (JSLIST Upgrade)
- Reactive clothing materials with increased protection, reduced doffing hazard, and reduced logistics burden. (JSLIST Upgrade)
- Cool, lightweight CB duty uniform based on nanofiber or membrane technology with increased mission duration and a reduced logistics burden. (JSLIST Upgrade)


Collective Protection Thrusts

Filtration

Objectives: Develop filtration approaches that reduce frequency of filter changes and are applicable to all toxic materials

Challenges:

- Residual life indicators
- Filter regeneration
- Biological filtration

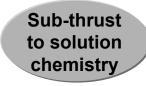
<u>Shelters</u>

Objectives: Develop collective protection shelters with improved environmental isolation against threats from CB and toxic materials

Challenges:

- Hermetic seals
- Rapid deployment
- Self-detoxifying materials

Decontamination Thrusts


Solution Chemistry

Objectives: Develop decon systems that supplement or replace existing systems used for immediate, operational and thorough decon and to replace DS2 and aqueous bleach in thorough decon applications.

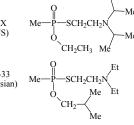
Enzyme Reactants

Objectives: Develop and demonstrate a new generation of CB warfare agent decontaminants that are non-toxic, non-corrosive, non-flammable, environ. safe and lightweight.

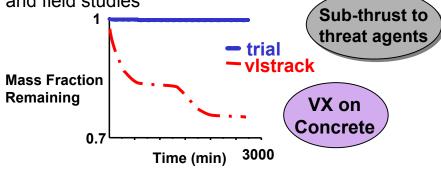
Sensitive Equipment

Objectives: Decontaminate sensitive equipment, interiors of combat vehicles and aircraft, and interiors on the move.

Solid Phase

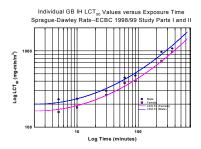

Objectives: Investigate and validate cost effective deactivation and destruction of CW agents rapidly by solid matrices. Extend technology to areas beyond sorbent decon.

Supporting Science and Technology Thrusts


Threat Agents

Objectives: Maintain awareness of evolving threat agent materials and conduct R&D studies to validate and characterize, and to assess fate of CB materials in environment

Environmental Fate


Objectives: Develop a chemical agent hazard predictive model from data acquired through archive, laboratory, wind tunnel and field studies

Low-Level Operational Toxicology

Objectives: Develop sound values for exposure levels having physiological impact

below acute response levels to guide development of detectors and protective equipment

Aerosol Technologies

Objectives: Characterize and test developmental air samplers/collectors; evolve new concepts toward next-generation small air samplers

Small Business Innovation Research (SBIR)

- All companies with less than 500 employees eligible
- Program consists of
 - Phase I feasibility study up to \$70K (w/ \$50K option)
 - Phase II development effort up to \$730K
 - Phase III commercialization effort with funding coming from a third party (either private or government)
 - Phase II+ continuing effort with government matching private investment up to \$250K
- CB defense topics can be found in
 - DOD SBIR solicitation 0x.1(open Oct-Jan)
 - Solicitation 03.1 included 20 CBD Topics
 - Annual CBD Budget = \$9M
- Army topics can be found in
 - DOD SBIR solicitation 0x.2 (open May-Aug)
 - Includes 1-2 Topics addressing CBD or smoke/obscurants

For access to further information, solicitations http://www.acq.osd.mil/sadbu/sbir/

Small Business Technology Transfer (STTR)

- Small business must team with a research institution
- Program consists of
 - Phase I feasibility study up to \$100K
 - Phase II development effort up to \$500K
 - Phase III commercialization effort with funding coming from a third party (either private or government)
- CB defense topics can be found in -
 - DOD STTR solicitation (open Jan-Apr)

For access to further information, solicitations http://www.acq.osd.mil/sadbu/sbir/him

Current solicitation closes 16 April. Includes 13 CB defense-related topics

Army CB Defense Topics

From FY03 STTR Solicitation:

- Biocidal Textiles for Soldier Protection and Homeland Defense
- Biofilm Remediation for Restoration of Contaminated Army Sites
- Improved Kit for Chemical Detection
- Early Detection of Neurotoxic Effects with a Wearable Monitor
- Narrow-Band Infrared Obscurants for Survivability
- Enhanced Vapor, Aerosol, and Particulate Sampling System for Optical Trigger Technologies
- Obscurant Dissemination
- Metabolic Bio-inspired Batteries
- Optical Communication Techniques for Improving Standoff Detection of Chemical and Biological Agents
- Nanocapsules for Biological Warfare Agent Detection and Neutralization for Immune Buildings
- Electrospray Fluorescence Dosimeter for Biological and Chemical Detection
- Optimized Fluorescent Transgenic Bioreporters
- Production of Ready-to-use DNA-based Diagnostics Kit for Dengue Virus Detection

Broad Agency Announcements

http://www.sbccom.apgea.army.mil/RDA/baa02.htm

Technology areas covered:

- Biotechnology
- Early Warning and Detection
- Modeling, Simulation, and Analysis
- Aerosol Technology
- Smoke/Obscurant Munitions
- Collective Protection
- Biological Point Detection
- Respiratory Protection Technology
- Decontamination
- Chemical Point Detection
- Flame and Incendiary Technology
- Biological and Chemical Countermeasures to Terrorism
- Non-Lethal (future)

Back-Up Slides

DTO CB 35 Standoff Biological Aerosol Detection

FY03 Objective: Initiate construction and characterization of breadboards

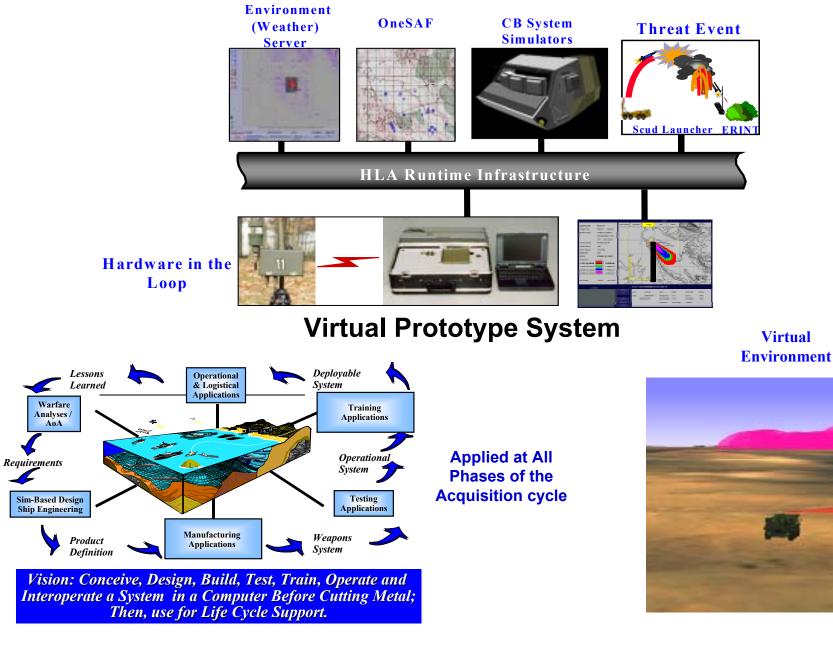
System	Technology	Construct / Characterize	Sensitivity & Range (TRE Data Point, Not Limit)
CATSI	Passive: 7-11 um; single pixel	Existing Chem System	BG, 10e6 ppl*, 3 km *particles per liter of air
IMSS	Passive: 3-5, 8- 12 um; imager	Existing Chem System	BG, 10e6 ppl, 3 km
HISPEC	Passive: 8-11 um; single pixel	Construct / modify System for Bio	BG, 10e6 ppl, 1km
AIRIS	Passive: 8-11.5 um; imager	Existing Chem System	BG, 10e6 ppl, 3 km
FAL	Active: 9-11 um	Existing Chem System	Ovalbumen, 10e4 ppl, 2 km
LaSen	Active: 3.2-3.6 um	Existing Chem System	TBD, test in 2003

DTO CB49 Integrated CB Standoff Detector

Candidate	Technol	ogies
Vandidate		logics

Proven Capability
Possible Capability / Need More Data
Limited Capability
Unrated

	Chemical Agent ID		TI		Biologica	Aerosol/Rain	
Technology	Vapor	Aerosol/Rain	Vapor	Aerosol/Rain	Bio/Non Bio		Particle Size
CO2 LWIR DISC/DIAL						\$ ⁻ \$	
CO2 conv MWIR DISC/DIAL						N 100	
SS conv MWIR DISC/DIAL						.0	
FTIR						verete	
Hyperspectral LWIR							
Passive MWIR							
SS conv LWIR DISC/DIAL							
SS conv SWIR - LWIR							
SS conv UV-LWIR							
Active LWIR Polarization							
Active MWIR Polarization							
Passive LWIR Polarization							
Brillouin Scattering							
mmW, sub-mmWave, Terahertz							
Time Resolution UV LIF							
Spectral Resolution UV LIF							
UV LIF							
Polarization UV LIF							
RADAR							
Filtered FLIR							
Nuclear Quadrapole Resonance							
Multi-photon Spectroscopy							
Acoustics							
Far-IR (12-25 microns)							
Raman							
Broad Band Lidar							
UV LIF / FTIR							


DTO CB52 Detection of CB Contaminated Surfaces

Preliminary Technology Down-selection

				Da	ita	ž
	Wavelength Band	Technology	Equipment Currently Available	Chemical Detection	Biological Detection	Previous Surface Work
	LWIR	Thermoluminescence	Breadboard			YES
		DISC/DIAL	Brassboard			SOME
		Polarization	Breadboard			
	MWIR	DISC/DIAL	Brassboard			
		Polarization	Breadboard			YES
	NIR	Raman (1.06µm/FT system)	Commercial			
		Scattering (2.0μm)	Commercial			
)e		LIBS (1.06µm)	Commercial			
Active	VIS	Surface Enhanced Raman (VIS/NIR)	Breadboard			YES
Ă		Raman	Commercial			
	Ultraviolet	Fluorescence	Breadboard			
		Raman <250	Breadboard			
		Time Resolved				
		Polarization				
	Multiband	Resonance Enhanced Raman	Breadboard			
		Brilllouin Scattering	Breadboard			
		Surface Enhanced Raman	Breadboard			
	LWIR	FTIR	Breadboard			SOME
Ð		FLIR	Breadboard			SOME
Passive	MWIR	FTIR				
as		Polarization				
4	NIR	FTIR				
		Hyperspectral				
I		Thermo IR	Breadboard (construction)			SOME

Collected	
Acquiring	

Simulation Based Acquisition

CBW Threat Agent Spectrum


CLEARLY CHEMICAL CLEARLY BIOLOGICAL SYMPTOMS APPEAR IN SYMPTOMS APPEAR IN **SECONDS TO MINUTES HOURS TO DAYS** CW BW **CLASSIC** EMERGING BIOREGULATOR TOXIN PATHOGEN **CHEMICAL CHEMICAL** BLOOD PAIN BACTERIA PLANT PROTECTION DEFEATING BACTERIAL VESICANT SLEEP VIRUSES PHYSICAL RICKETTSIAE **NERVE** BLOOD VENOM **INCAPACITANT** PRESSURE **PSYCHOLOGICAL** MARINE **GENETIC ENHANCERS INCAPACITANT** MOOD **ENGINEERED MICRO-ORGANISMS** FUNGAL **CHOKING** ALGAL **MID-SPECTRUM**

37

Toxic Industrial Chemicals (TICs)

TICs – Any chemical with LCt₅₀ less than 100,000 mg-min/m³ and produced in quantities exceeding 30 tons annually at one facility Fuel Depot in Smederevo,Yugoslavia

An Integrated Materiel Approach to Counter the Threat

