Smart Dust : Dispersed, Un-tethered Geospatial Monitoring

Dr. Raja R. Kadiyala Chief Technology Officer CH2M HILL - Oakland, CA

raja@ch2m.com

Drivers and Trends

Sensing, Communication and Computation

- MEMS (<u>Micro-Electro-Mechanical-Systems</u>) Technology
 - Ability to machine structures in silicon
 - Driving size and cost of sensors down
 - Gyroscopes now 3 in³ (was 1,000 prior)
 - Wireless Mesh Networks
 - Low power fault tolerant wireless communication
 - Information is no longer tethered
 - Setup and teardown is minimal
- Moore's Law
 - Exponential growth in number of transistors
 - Transistors/in² doubles every 18 months
 - Will continue through 2010, most likely till 2020

transistors

Implications

Integration of these core technologies allows for:

- Cheap, un-tethered information (not just data)
- Easily deployable solutions
- Ubiquitous information

What is Smart Dust?

- Integration of sensing, computation and networking
 - Create small, low power un-tethered package mote
- Term Smart Dust coined by Dr. Kris Pister/UCB in 1994
 - As Moore's law continues, size will continue to shrink \rightarrow dust

Wireless Mesh Network

Self configuring mesh: motes automatically establish links with nearby neighbors, <u>each</u> mote is a router

Peer-to-peer : each mote has a transmitter and receiver to both send and receive data

Multi-hopping: data is passed from mote to mote along the network

Self healing: network automatically re-routes around broken links

Wireless Monitoring and Control Network

800 node demo at 2001 Intel Developers Forum

Self-configuring Self-healing Scalable Dynamic

Wireless Networks for Sensors

Network and computations designed to meet the low power, low throughput requirements of wireless sensor networks

Energy and Lifetime

- 1 mAh \sim = 1 micro*Amp*month (µAm)
- Lithium coin cell: 220 μAm (CR2032, \$0.16)
- AA alkaline ~ 2000 μAm
- 100kS/s sensor acquisition: 2μA
- 1 MIPS custom processor: 10μA
- 100 kbps, 10-50 m radio: 300μA
- 1 month to 1 year at 100% duty
- 10 year lifetime w/ coin cell \rightarrow 1% duty
 - Sample, think, listen, talk, forward ... every second!
- Energy Harvesting infinite lifetime
 - Solar, vibration, thermal, etc.

Smart Dust vs. RFID

IC or microprocessor

- Radio Frequency Identification RFID
- **RFID** Components
 - Transceiver Tag Reader (always powered)
 - Transponder RFID tag (typically un-powered)
 - Antenna used for data and power propagation

IC or microprocessor

CH2MHILL

- RFID is typically passive
 - Needs a Tag Reader to activate
 - Does not typically store/update state information
- Smart Dust is active
 - Communicate on demand
 - Sense and update state information dynamically

antenna

Available Sensors

- Demonstrated sensors integrated with Smart Dust
 - Temperature, light, humidity, pressure, air flow
 - Acceleration, vibration, tilt, rotation. sound
 - GPS enables spatial aspects
 - Gases (CO, CO2)
 - Passive Infra-red, contact/touch
- Available
 - Images, low-res video
 - Gases (VOCs, Organophosphates, NOx...)
 - Radiation

Demonstrated Actuators

- Motor controllers
- 110 VAC relays
- Audio speaker
- RS232: LCD, ...

Mote Localization

- Determine mote location based on anchors
 - Use GPS on anchor motes
 - Triangulate distances for non-anchored motes
 - Two dimensional: 3 distances
 - Three dimensional: 4 distances

29 Palms Sensorweb Experiment

Goals

- Deploy a sensor network onto a road from an unmanned aerial vehicle (UAV)
- Detect and track vehicles passing through the network (magnetometer)
- Transfer vehicle track information from the ground network to the UAV
- Transfer vehicle track information from the UAV to an observer at the base camp.

Last 2 of six being dropped

Infrastructure Protection

Performance Detect activity by motion, sound,
magnetic field sensors • F Send alarms to Op Center via cell phone • L or satellite phone • L

Provide images of area on alarm

Spatial Aspects

- Pre-defined linear network
- Use radio time of flight calculations
- Immediate localization of event

Sustainability

- Real-time mote health reporting
 - Battery, sensor, radio
- Network management
 - Notification of potential single-point failures (motes, links)
- Environment a challenge

Seismic Structural Monitoring

Goal: 100 sensors on three floors

Traditional Infrastructure

Mote Infrastructure

Unattended Perimeter Security

The Problem: Cheaply monitor infrastructure perimeter

Sensing of Interest: Motion, vibration, gas emissions.

What Smart Dust Provides

- Dramatically reduced installation time and cost
- Reliable, self-healing monitoring
- Unattended operation for years
- Quick repurposing of network to serve new security priorities

Application Footprint

- Where does smart dust make the most sense?
 - Low cost installation/deployment
 - Dynamic need to set-up and tear down quickly and cheaply
 - Un-tethered the need to function without wires
 - Low power ability to run for an extended period of time
 - Passing of information, not just raw data

future?

What's Next

Applications

- Leverage un-tethered sensing with localization
 - Wetlands monitoring
 - Site remediation monitoring
 - Spatially link information streams
- Challenges
 - Information Aggregation
 - Only disseminate meaningful information
 - Perimeter processing necessary

Technology

Smaller and Lower Cost Integrated Solution

- CMOS ASIC
 - 8 bit microcontroller
 - Custom interface circuits
- 4 External components

Single Chip Integration

- 8 bit microprocessor
- Analog to Digital Converter
- 900 MHz transmitter

Summary

Smart Dust

- Integrated package that provides
 - Un-tethered sensing
 - Information gathering
 - Reliable low-power communication
- As Moore's law continues, devices will continue to shrink
- Can spatially enable either through topology or assisted GPS

Questions

raja@ch2m.com

