Distribution Statement A - Approved for public release; distribution unlimited



1

## Man-Packable Power Systems

Assessment of Alternative Fuel Cells (Current and Future Technologies)

> Part 2 of 2 (Future Technologies)

### **Joint Service Power Expo**

May 2-5, 2005 Tampa Convention Center

Tampa, Florida

Presented By: Scott Blattert, NSWC Crane, (812) 854-5148, Scott.Blattert@Navy.Mil



Harnessing the Power of Technology for the Warfighter



# Outline

- Identify & Assess Some of DoD's Near Term Man Packable Fuel Cell Technologies
  - Targeted as Primary Power Sources
  - Targeted as BB-2590 Battery Chargers
- Address Maturity of Technologies
- Compare Physical/Electrical Properties
- Identify Environmental Limitations
- Chart Volumetric/Gravimetric Requirements
- Provide Conclusions & Recommendations





- Mr. Nick Sifer (CERDEC Ft Belvoir)
  - Ultra Cell xx90 EVT 45W RMFC
- Major Alan Stocks (ONR Code 353)
  - Mesoscopic Devices MesoGen-250 250W SOFC
- Dr. Deryn Chu (ARL Adelphi, MD)
  - Mesoscopic Devices MesoGen-20 20W DMFC
- Dr. Valerie Browning (DARPA)
  - Adaptive Material Inc Gen 2 20W SOFC
  - Mesoscopic Devices MesoGen-75 75W DMFC





Acknowledgements

- Captain David Pfahler (AFRL WPAFB)

   Protonex DUS&T P2 30W PEMFC
- Mr Christian Böhm SFC
  - Smart Fuel Cell C50 DMFC





# **Technologies Assessed**

















Ultra Cell XX90 EVT

## 45W RMFC, 12VDC

Target Application – Primary Power Source DoD Lead Activity – CERDEC Fuel – 67/33 vol% Methanol/H<sub>2</sub>O TRL – 3-4







## 20W SOFC, 12 VDC

- **Target Application Primary Power Source**
- **DoD Lead Activity DARPA**
- **Fuel Propane/Butane**
- <1000ppm sulfur
- 22ppm typical
- TRL 3- 4







# Protonex DUS&T P2

## 30W PEM, 12 VDC

- Target Application Battery Charger DoD Lead Activity – AFRL
- Fuel 20-25% Sodium Borohydride
  - 3% Sodium Hydroxide 72-77% De-Ionized H<sub>2</sub>O
- TRL 3- 4







## 20 W DMFC, 12 VDC

- **Target Application Primary Power Source**
- **DoD Lead Activity ARL**
- Fuel 100% Methanol TRL - 4





## 75 W SOFC, 12 VDC

#### **Target Application – Battery Charger**

## **DoD Lead Activity – DARPA**

### Fuel - Sulfur Free JP-8

**TRL - 3** 





# 250 W SOFC, 12/24VDC

# Target Application – Battery Charger DoD Lead Activity – ONR/USMC

Fuel - JP-8

**Desulfurizer to <15ppm** 

TRL - 2







### • SFC C50 - TRL 2/3

- First Generation Prototype Under Internal Development projected availability is 10/05
- Components Alpha Unit In Test, 1800 Hr Internal Demonstration
- System Projected 5000 Hr
- Ultra Cell XX90 EVT TRL 3/4
  - First Generation Prototype To Be Delivered To CERDEC 10/05
  - Alpha Unit Components In Test, 1800 Hr Internal Demonstration
  - System Life Projected 5000Hr

#### • AMI Gen 2 – TRL 3/4

- Generation 2 Prototype To Be Delivered To DARPA 12/06
- System/Stack Gen 1.9 In Test, 100+/300+ Hr Internal Demonstration
- System Projected 2000 Hr





- Protonex DUS&T P2 TRL 3/4
  - Second Generation Prototype Delivery Scheduled 10/05
  - P1 System/Stack In Test, 100+/4000+ Hr Internal Demonstration
- Mesoscopic MesoGen-20 DMFC TRL 4
  - First Generation Prototype To Be Delivered To ARL Fall 05
- Mesoscopic MesoGen-75 SOFC TRL 3
  - Generation 2 Prototype To Be Delivered To DARPA 6/05
- Mesoscopic MesoGen-250 SOFC TRL 2
  - Contract Award 3/05
  - First Gen Prototype To Be Delivered To ONR/USMC 2008





## **Projected Physical Properties**

| Manufacturer                      | Total<br>Unit<br>Volume<br>(cc) | Base<br>Unit<br>Volume<br>(cc) | Auxiliary<br>Unit<br>Volume<br>(cc) | Wet<br>Weight<br>(kg) | Dry<br>Weight<br>(kg) | Auxiliary<br>Weight<br>(kg) |
|-----------------------------------|---------------------------------|--------------------------------|-------------------------------------|-----------------------|-----------------------|-----------------------------|
| Giner 120<br>(Today's Unit)       | 14, 287                         | 14, 287                        | 250                                 | 9.00                  | 8.80<br>(H2O res)     | 0.20                        |
| <b>SFC 50</b> (C50)               | 2,812                           | 2,312                          | 500                                 | 2.47                  | 2                     | 0.47                        |
| AMI 20<br>(Generation 2)          | 3,021                           | 2,043                          | 978                                 | 1.30                  | 0.80                  | 0.50                        |
| Protonex 30<br>(DUS&T P2)         | 1,730                           | 980                            | 750                                 | 2.20                  | 0.75                  | 1.45                        |
| <b>Meso 20</b><br>(Meso Gen-20)   | 1,400                           | 1,150                          | 250                                 | 1.10                  | 0.86                  | 0.24                        |
| Meso 75<br>(Meso Gen-75)          | 5,850                           | 5,200                          | 650                                 | 3.58                  | 3.00                  | 0.58                        |
| <b>Meso 250</b><br>(Meso Gen-250) | 14,700                          | 12,000                         | 2,700                               | 6.40                  | 4.00                  | 2.40                        |
| UltraCell EVT<br>(XX90 EVT)       | 1,920                           | 1,420                          | 500                                 | 1.57                  | 1.00                  | 0.57                        |

#### Blue – Data For Today's Technology





## **Projected Electrical Properties**

| Manufacturer                      | Capacity Of<br>One Container<br>@ Rated Cap | Fuel<br>Consumption<br>(Kg/KWh) | Nominal<br>Voltage<br>(VDC) | Cold Start<br>(Seconds) |      | Hybrid<br>Design<br>(Battery) |
|-----------------------------------|---------------------------------------------|---------------------------------|-----------------------------|-------------------------|------|-------------------------------|
|                                   | (W-Hrs)                                     | 1.00                            | 10                          | 75%                     | 100% |                               |
| Giner 120<br>(Today's Unit)       | 192                                         | 1.29                            | 12                          | <300                    | 300  |                               |
| <b>SFC 50</b><br>(C50)            | 480                                         | 0.98                            | 12/24                       | 120                     | 150  | 10-<br>100Wh                  |
| AMI 20<br>(Generation 2)          | 820                                         | 0.49                            | 12                          | <900                    | <900 | Li-Poly<br>23Wh               |
| Protonex 30<br>(DUS&T P2)         | 720                                         | 2.05                            | 12                          | <45                     | <45  | 3 Ni-Cd<br>0.9 Wh             |
| Meso 20<br>(Meso Gen-20)          | 316                                         | 1.34                            | 12                          | <600                    | <600 | TBD                           |
| <b>Meso 75</b><br>(Meso Gen-75)   | 1,530                                       | 0.48                            | 12                          | <900                    | <900 | TBD                           |
| <b>Meso 250</b><br>(Meso Gen-250) | 6,000                                       | 0.48                            | 24                          | <900                    | <900 | TBD                           |
| UltraCell 45<br>(XX90 EVT)        | 480                                         | 1.20                            | 12                          | TBD                     | TBD  | Li-Ion<br>7.4Wh               |

#### Blue – Data For Today's Technology

Distribution Statement A – Approved for public release; distribution unlimited Harnessing the Power of Technology for the Warfighter





#### Projected Environmental Limitations

| Manufacturer                | Storage T/H<br>(C, %RH) | Operating T/H<br>(C, %RH) | Operating<br>Altitude<br>(Kft) |
|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Giner 120<br>(Today's Unit) | TBD                     | TBD                       | TBD                            |
| <b>SFC 50</b><br>(C50)      | -35 to 55               | -20 to 50                 | 10K                            |
| AMI 20                      | -40 to 70               | -40 to 60                 | 20K                            |
| (Generation 2)              | 0 to 100%               | 0 to 99+%                 |                                |
| Protonex 30                 | TBD                     | -20 to 50                 | >10K                           |
| (DUS&T P2)                  | 0 to 100%               | 0 to 100%                 |                                |
| <b>Meso 20</b>              | 0 to 40                 | 0 to 40                   | 10K                            |
| (Meso Gen-20)               | TBD                     | TBD                       |                                |
| Meso 75                     | -20 to 60               | -20 to 60                 | 10K                            |
| (Meso Gen-75)               | TBD                     | TBD                       |                                |
| <b>Meso 250</b>             | -20 to 60               | -20 to 60                 | 10K                            |
| (Meso Gen-250)              | TBD                     | TBD                       |                                |
| UltraCell 45                | -31 to 49               | -31 to 49                 | 5K                             |
| (XX90 EVT)                  | 0 - 100                 | 0 - 100                   |                                |

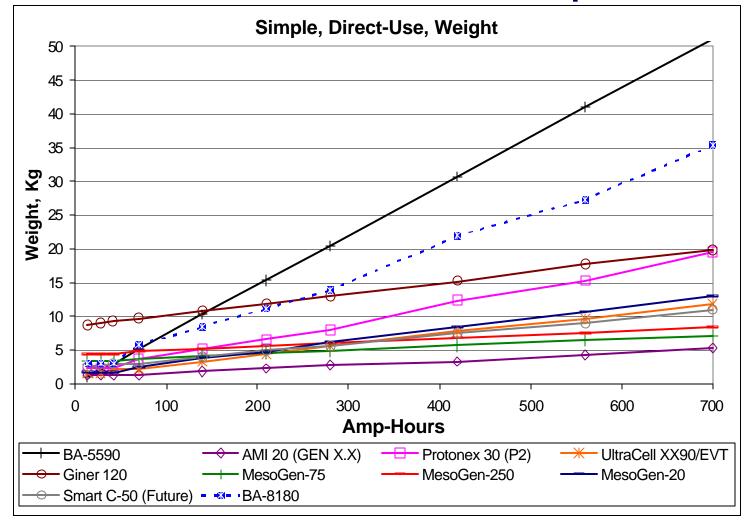
All Data Provided By Mfg/Spec Sheet

Blue – Data For Today's Technology

Distribution Statement A – Approved for public release; distribution unlimited

Harnessing the Power of Technology for the Warfighter

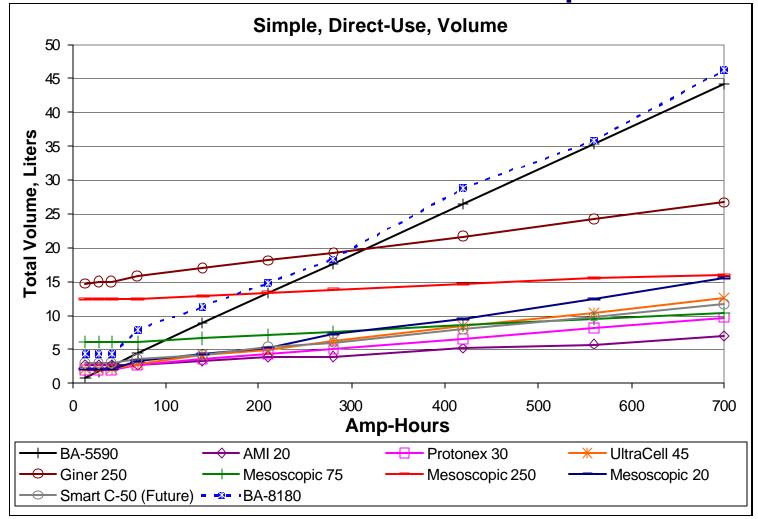





- Simple 12V Direct-Use Application
  - Direct-Use as Power Supply
  - Power Provided Assumed Adequate for Mission
  - Continuously Operate @ Full Power
  - Weight/Volume Increments Only With Fuel Refills






# Simple Direct-Use Gravimetric Comparison



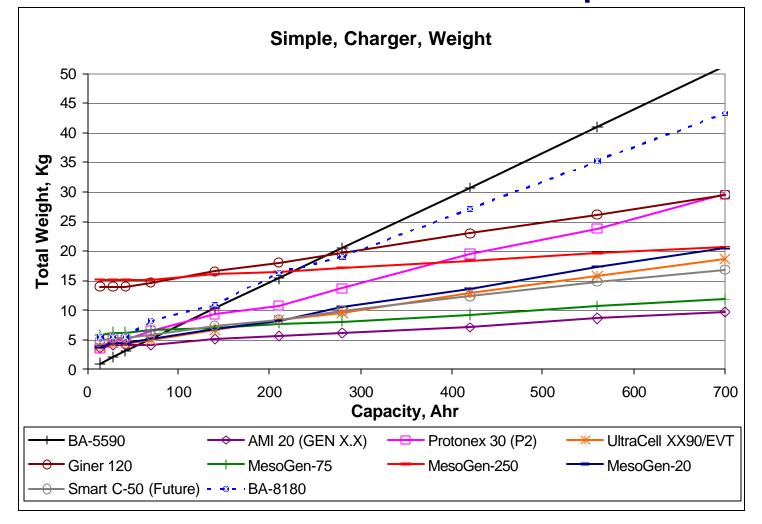




# Simple Direct-Use Volumetric Comparison



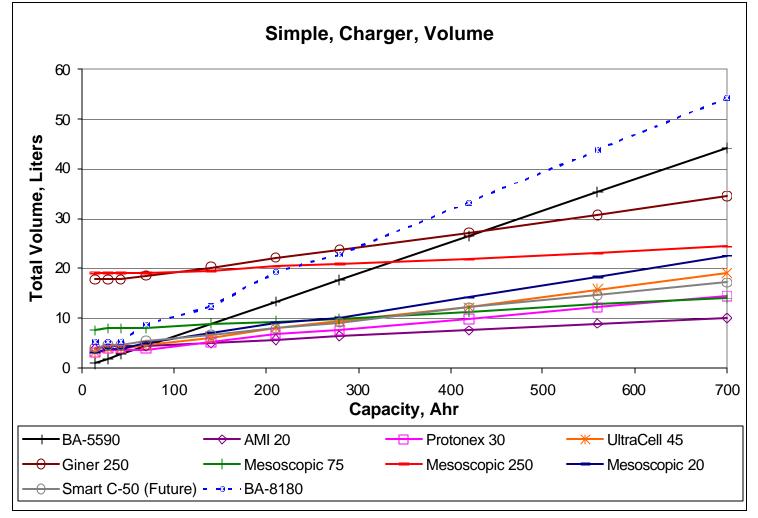





- Simple 12V Battery Charger Application
  - All Batteries Fully Charged Before Starting Mission
  - Power Provided Adequate for Mission
  - Two BB-2590's Required For Each 75W Provided
    - Round Up
  - Continuously Operate Fuel Cell @ Full Rated Power
    - Charging First Battery as Second Battery is Discharged
  - Constant Voltage Charge BB 2590's Only
    - Charge Control Circuit Weight & Volume Omitted
  - 69% Efficient Charge Cycle
    - 0.85 Battery Charge Eff X 0.9 Charge Circuit Eff X 0.9 Charger Power Utilization
  - Weight & Volume Increment Only With Fuel Refills






# Simple Charger Gravimetric Comparison



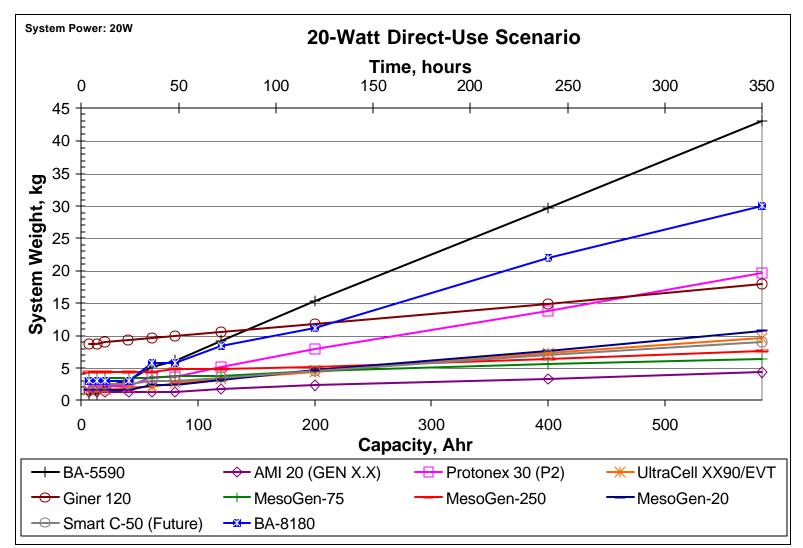




# Simple Charger Volumetric Comparison








- 12V Primary Power Scenarios
  - Direct Use as Power Supply
  - Fuel Cells Incremented to Meet Power
    - Two 20W Fuel Cells Required for 40W mission
  - Fuel Incremented to Meet Energy
  - Weight/Volume Increments With Fuel Cells And Fuel Refills
    - Data Points Graphed at Target Durations
      - 4hr, 8hr, 12hr, 16hr, 24hr, 36hr, 48hr, 60hr, 72hr, & 120hr+

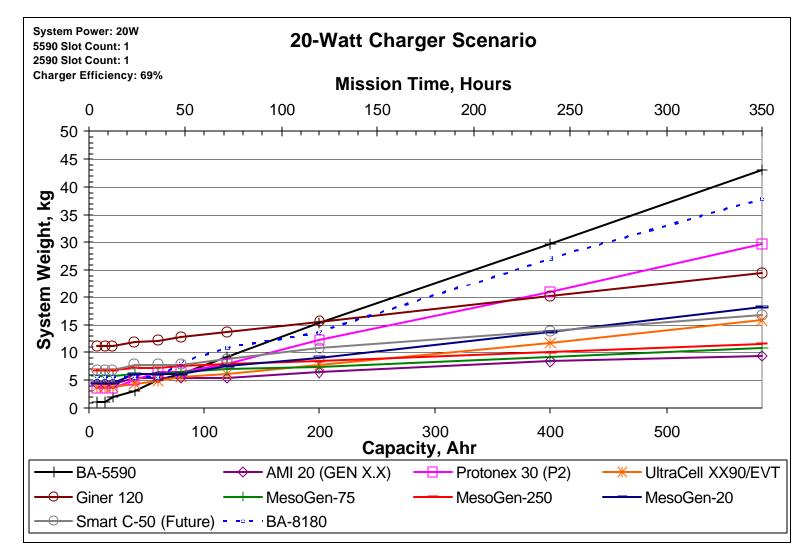




## 20W Direct-Use Scenario



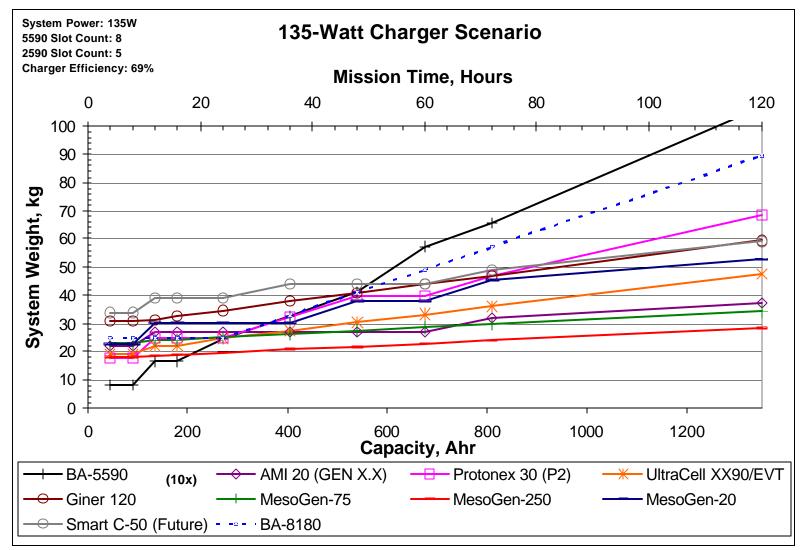





- 12V Battery Charger Scenarios
  - BB-2590's Replace BA-5590 By Power
  - All Batteries Fully Charged Before Starting
  - 69% Charge Cycle Efficiency
  - Charger Power Keeps Pace With Mission Requirements By Adding Fuel Cells
  - Weight/Volume Increments Only With Fuel Refills
    - Data Points Graphed at Target Durations
      - 4hr, 8hr, 12hr, 16hr, 24hr, 36hr, 48hr, 60hr, 72hr, & 120hr+



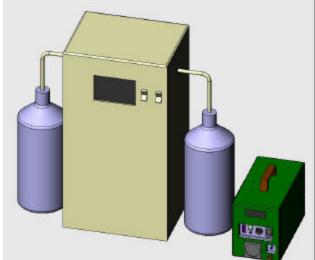



## 20W Charger Scenario








# 135W Charger Scenario







- ONR/USMC (Major Stocks)
  - Sub To ONR Electric Ship Development
  - TRL ~ 4 (Mesoscopic Devices)
  - 0.5 .75 L/Hr, 3-15 ppm
  - Prototype Delivery 2008
- Multi-bed system
  - Single Rotating Valve
  - Maximizes Sorbent Efficiency
  - Air Regenerable Sorbents







- Projections Do Not Account For Design Maturities
- Pros and Cons of Each Technology Should be Closely Considered for Each Application
- Actual Performance Data at Specific Power Levels Will Improve Quality of Projections
- Using Bulk Refill Container(s) for Commodity Fuels Will Level Playing Field (Container Selection)
- Power Management Systems & Charge Circuit Technologies Need Advancement

