Safety and Reliability Through Technology

ESAD Technology
Benefits to ISD’s

New Global Impact
April 5-7, Seattle, Washington

49th Annual Fuze Conference
ESAD Technology Benefits to ISD’s

• Brief Personal Note, A Tragic Accident
• MIL-STD-1901A Requirements
• Typical ISD System, Safety Concern and Possible Remedy
• Traditional Out-of-Line ISD
• Out-of-Line Disadvantages
• New Component Requirements
• Inline ISD Architectures
• Conclusions
A Tragic Accident

- Fire Aboard the Aircraft Carrier USS Forrestal (CV 59)
 - Date: 29 July 1967
 - Time: 10:50 AM
 - Lives Lost: 134
 - Seriously Injured: 64

Source: Naval Weapons Center Report, China Lake, CA, January 1975
USS Forrestal (CV-59)
July 29, 1967
USS Forrestal (CV-59)
July 29, 1967
USS Forrestal (CV-59)
July 29, 1967
A GOOD DOCUMENTARY

SAILORS TO THE END

By

GREGORY A. FREEMAN

Harper Collins Publishers
MIL-STD-1901A Requirements Revised June of ‘02

- Traditional Out-of-Line Still Acceptable
- Slight Revisions to In-Line Requirements
- Range of Application is Most Significant Change (Par. 4.2.a)
 - Safety Analysis is no longer a basis for non use of an ISD
- 1 Amp -1 Watt In-Line No Longer Acceptable
- An ISD is Now Mandatory for New Exploratory, Advanced Engineering, and Operational System Developments. Par. 1.2
Typical ISD System

Launcher Control

Intent to Launch:
- Target Recognition/Identification
- Executive Decision
- Computer Decision

Safety Interlocks Removed:
- Multiple Key Locks
- Guarded Toggles/PushButtons
- Safety Pins

Launch Command Issued

ISD Ignition Safety Device

Safety Features:
- Out-of-Line Energetics
- Safety Shorts
- Insensitive 1 A/1 W Squibs

Electrical Interface

Deflagrating Output
Typical Interface Details

Launch Control

ARM (+28 VDC)

Fire (+28 VDC)

Return

SHIELD

ISD
Improved Interface

- Launch Control
- ARM (+28 VDC)
- Fire (Serial Interface)
- Return
- SHIELD

ISD
Traditional Out-of-Line ISD

- **Simple Operation:**
 - Arm Command (Solenoid Power)
 - Fire Command (Firing Energy)
 - Status Feedback
 - Current Limit Feature
Out-of Line Disadvantages

• Minimal Safety (Arm-Fire Device)
• Often Large and Heavy
• Physical Location Restricted to Near Ignition Point
• High Current Requirements
• Spring or Motor Driven Return to Safe Condition
• Relatively Expensive
New Component Requirements
EFDI (Exploding Foil Deflagrating Initiator)

- LEEFI with HNS-4 to BKNO3 Transition
- Based on Slapper Detonator Technology for Warheads
- Now Under Development and Qualification
New Component Requirements

EFDI In Standard LEEFI Package

MODEL LI 7010
Igniter™
Patent Pending

P.O. Box 1229, Middletown, CA 95461
Phone: (707) 928-5244 Fax: (707) 928-5033
E-mail: office@reynoldssystems.com

- Igniter for
 Rocket Motors
 Gas Generators

- Pressure Cartridge
 Pyrotechnic Actuators,
 Ejectors, Pin Pullers, Valves
 and other piston driven
 devices.

3 X actual size

communications
KDI Precision Products, Inc.
New Component Requirements
IPS (Integrated Planar Switch)

- Part of Slapper Geometry
 - Zero Size
 - Near Zero Cost
- ARDEC Funded Development
- Now in Advanced Development
- Low Risk for Qualification
 - Passed Engineering Env. Testing
 - Based on Fully Qualified LEEFI
- Enhances Safety
 - MIL-DTL-23659
- Requires a Hermetic Seal
New Component Requirements

IPS Operation

- Electrical
 - $+V$ increased to exceed breakdown voltage of gap
 - Breakdown voltage set by gap size
 - Other characteristics set by surrounding circuitry
New Component Requirements
IPS (Integrated Planar Switch)

V

V_{\text{max}}

V_{\text{min}}

Jitter

IPS Threshold Jitter
• Tested to LEEFI Levels
 – Cold -65°F
 – Hot +160°F
 – Shock 2000g .5 ms
 – Vibe F15 Buffet MIL-STD-810

• Test Results
 – 60 for 60 (30 hot, 30 cold)
Self-Contained ISD

- Single Unit
- Possible Drop-in Replacement
- Location Restricted
- All components at Ignition Point
Remote Ignition Module

- Simplest Remote Configuration
- Low Cost Ignition Module
- Requires Stripline Connection
- Limited Separation Distance

![Diagram of Remote Ignition Module](image)
Remote Ignition Module with IPS

- Low Cost Switch Located in Ignition Module
- Stripline Required
- Safety Enhanced by IPS
Ignition Module with IPS and Energy Storage

- No Strip-line Requirement
- Can Remote to Long Distance
ISD /ESAD Combination

Electronics Safety Arm Device (ESAD) (MIL-STD-1316)

In-Line Ignition Safety Device (ISD) (MIL-STD-1901)

- Safety Environments
- Warhead Trigger
- Missile Communication
- Power
- ARM (Dynamic Drive)
- Fire
- Power
- Feedback (Optional)
- Return

High Voltage to Ignition Module

Detonation Output

Warhead Initiation

L3 Communications
KDI Precision Products, Inc.
Conclusions

• ISD Safety Evolution Has Been Slow
• New Devices and Warhead ESAD Technology Is Ready to Offer Improvements in:
 – Safety
 – Reliability
 – Design Flexibility
 – Weight
 – Cost