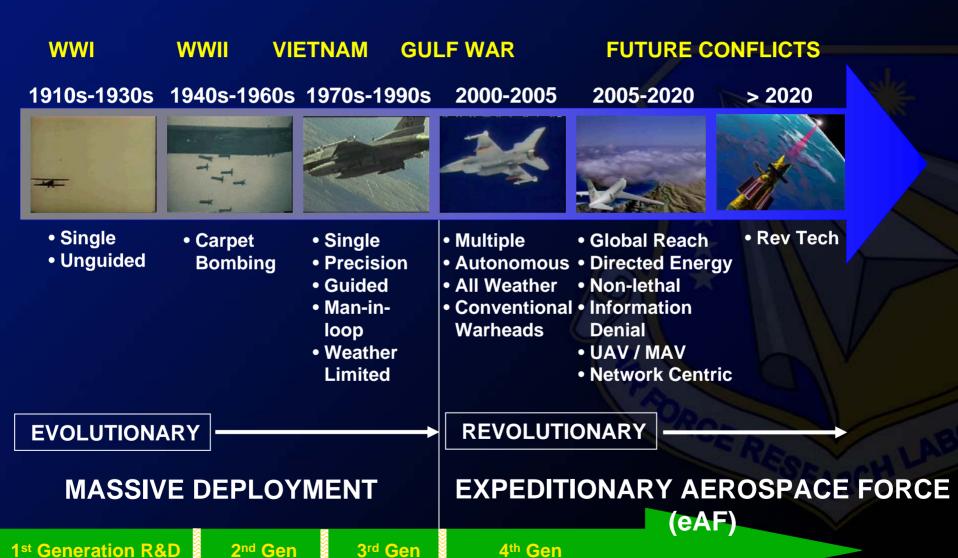
Air Force Research Laboratory

Munitions Directorate


Air Force Fuze Technology Overview

Timothy Tobik
Chief, Fuzes Branch
Munitions Directorate
Air Force Research Laboratory

Historical Perspective Munition Evolution / Revolution

Munitions Directorate

Ref: Stephen Korn's Course on "Management Innovation in the 21st Century"

Air Force Research Laboratory's Challenge

Munitions Directorate

- What is Our Product in The Directorate?
 - Knowledge!
- How do we Transfer Knowledge?
 - Transformed into New Capability
 - Delivered In the Form of Technology

Captured in: Analysis, Experiments,
Demos, Breadboards,
Brassboards....

- How Do We Transfer Knowledge Into Capability?
 - Show Evidence of Learning in Being Able to Deliver A Capability to Various Specifications of Performance

Ref:

Stephen Korn's Course on "Management Innovation in the 21st Century"

Book: Third Generation R&D, Philip A. Rousell, Kamal N. Saad, Tamara J. Erickson, Harvard Business School Press, 1991 (Arthur D. Little Inc., Copy rights)

Book: Fourth Generation R&D, William L. Miller, Langdon Morris, Copyright 1999, Published by John Wiley & Son, Inc.

Areas for Innovative Management of Fuzing

- Sustainment/Stockpile Management
 - Aging stockpile...reduced/declining reliability
 - Requires Replenishment
- Legacy Systems Will Continue to Require Fuzes as A Commodity
 - P3I or New Fuze
- Future System Trends Toward Integrated Distributed Fuze Systems Within Weapon/Program
 - Integral, Distributed, ESAD-Based, Miniature, Agile,
 Programmable, More Reliable, "Smart", Cheap ...

Fuze Technology Base Issues

Munitions Directorate

- Maintain Expertise and Facilities to Support New Technology Research in Fuzing—Balanced Posture
- Require the ability to Resolve Development and Production Problems
- Enhance Enabling Fuze Technologies For Timely Insertion
- Recognition Regarding Sophistication and Complexity---- Often an after/last Thought
- Service Investment--- Specific Near Term Needs
- Industry Relies Heavily on DoD for for Long Term S&T Investment---- Near Term Stakeholders; No Incentive

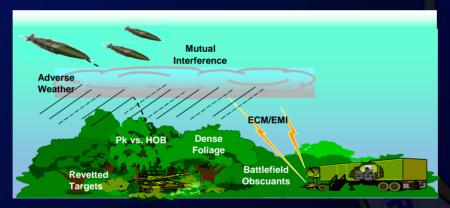
Fuze Sub-Core Focus Areas "Adaptable Fuzing for Focused Lethality"

chem/bio defeat

warhead node

Munitions Directorate Poin Point Burst Technology Penetration Fuzing Technology **Projected** trajectory Raised (ground Initiation eight-of-Sequence Burst (HOB) 2 算 3 Radar based ground contour **Battle Damage Sensing Technology** Fuze Experimentation **Advanced Initiation** •TMD based mini-penetrators delivered with ground stations Wireless Intra-Weapon Communication Sensor and Intra-weapon to warfighters Fuze and Telemetry sensor nodes

FAST- A Precision HOB, Low Cost Ground Profiling Radar


Munitions Directorate

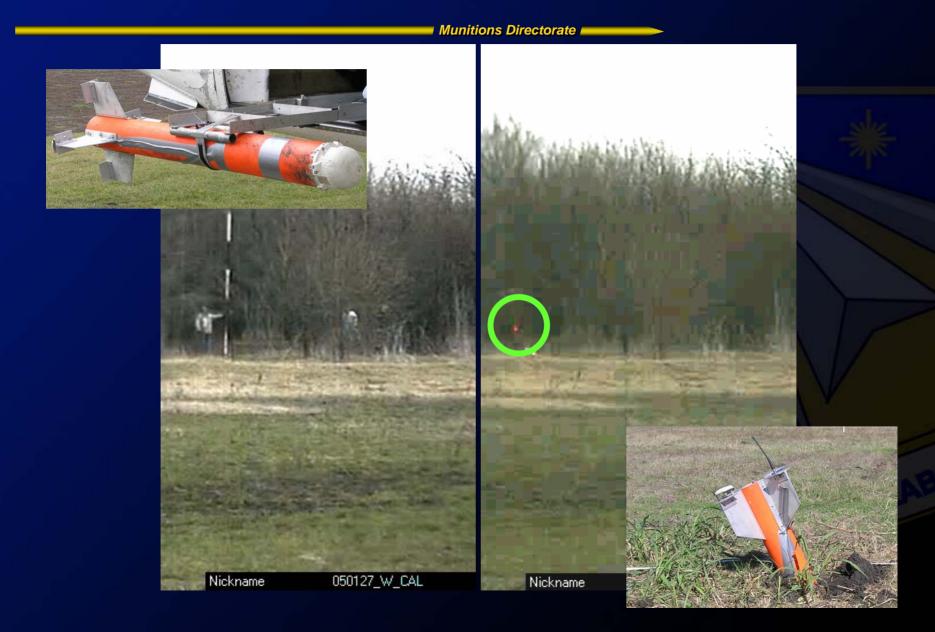
Common Fuze Sensor for a Broad Spectrum of Weapons

Pulse Doppler Radar Using Low Cost COTS Components

Nose and Tail Mount Configurations Only Differ in the Antenna Structure

Small Volume Common Design Provides Identical Requirements for Any Weapon

- Advanced Development
- Contractor: Mustang


Nose-Mounted
Configuration
(DSU-33 Form Factor)

Tail-Mounted Configuration (MK-82 Demo)

100% Common Low Cost Electronics and Operational Software

Flight Tests

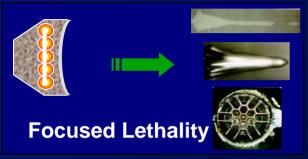
Focused Ordnance Controller with Aimpoint Selection (FOCAS) Program Objectives



Contractor: General Dynamics

Objectives:

 Develop the next-generation active imaging fuze sensor to enable aiming of directional mass-focused warheads vs. surface & air targets

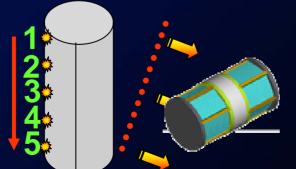


 Design, simulate, fabricate, and test an imaging fuze to enable warhead aimpoint selection for air-delivered munitions.

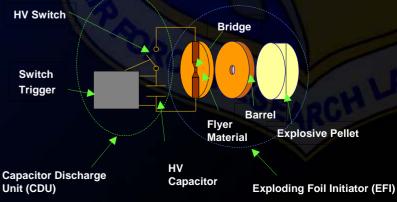
Distributed Miniature Initiation Technology

Munitions Directorate

Enable focused warheads in smaller, adaptable ordnance packages to effectively counter targets with reduced collateral damage



Initiation


Sequence

MASS FOCUSED/DIRECTIONAL WARHEAD(S)

Initiation Needed For Aimable Warheads:

- Individual control of initiation points
- Low firing energy detonators
- Miniature firing systems
- Initiation of various high explosives
 Aimable Warheads Attributes:
- Smaller
- Higher P_k
- Lower potential for collateral damage

Critical EFI Component Development, Miniaturization and Integration

Adaptable Miniature Initiation System Technology (AF & DOE Kansas City Plant)

AMIST Architecture II: Autonomous Initiation Points

Digital Control
Line

Target
Detection
Device
(Mode, Fire)

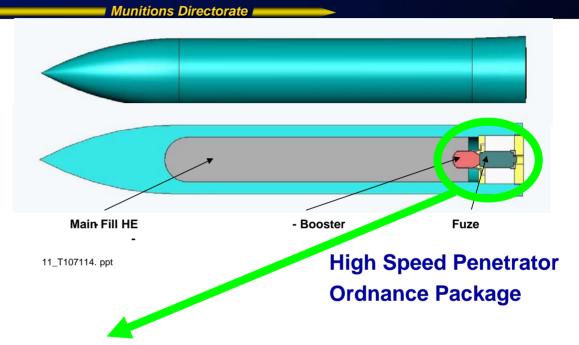
Initiation Point

Main Charge

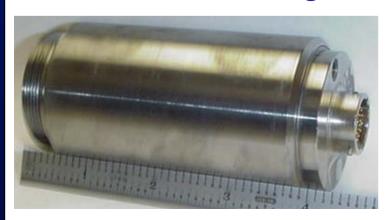
Fuze Mode Controller

Initiation Point Components

EFI Detonator
CDU
Trigger Circuit
Voltage Step up
Power Supply
Memory
Logic
Clock


<u>Advantages</u>

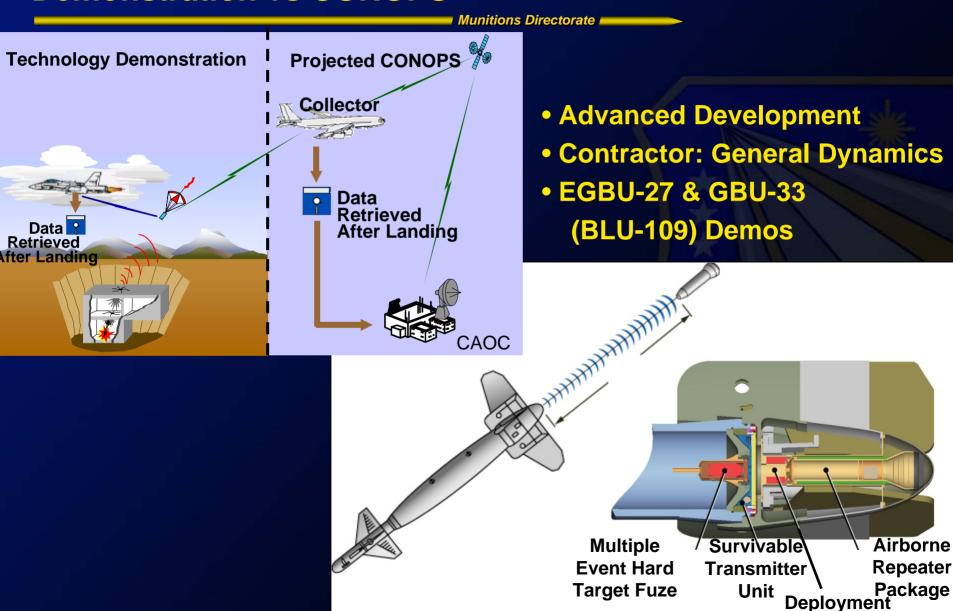
Low voltage routed in main charge Wire routing doesn't limit mode selection Submunition application Minimal amount of wiring


Disadvantages

Maximum quantity of components in fill Maximum complexity

Fuzing For High Speed Penetrator

STRIFE Fuzing



Contractor: ATK/Thales

Changes Implemented
To MEHTF for Tactical
Baseline Point
Design Fuze

Fuze Integrated Bomb Damage Information Demonstration Demonstration vs CONOPS

Air Force BLU-97 Fuze Effort

Danger to Friendly Forces and Civilian Population

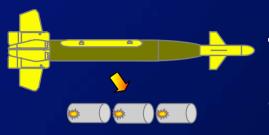
Munitions Directorate

Danger to Potential IED's - Improvised Explosive Devises

Deliverables:

- Detailed Drawings of fully integrated Self-Destruct design
- Demonstration Prototype
- Final Report detailing tests results and summary of effort
- Business Implementation Plan for Retrofitting CBU-87

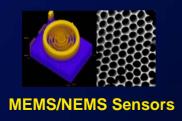
Activity:,


Release AFRL/MN BAA, March 05

Proposals due, April 22

Award Contract, Mid May

Hardened Miniature Fuze Technology


Packaging

Objective:

 Develop Hardened Miniaturized Fuzing Technology that Can Perform Active Target Detection and Initiation Functions for Novel Weapon Concepts

- Detailed Drawings of Miniature Fuze design
- Demonstration Prototype
- Final Report detailing tests results and summary of effort

Activity:,

- ■Release AFRL/MN BAA, Jun 05
- Proposals due, Aug
- Award Contract, Sep

Long Term Fuze Vision

Munitions Directorate

- Watch makers Paradigm
 - Mechanical Electro Mechanical Electronic
- Fuzing Technology
 - IM compatibility
 - UAV Weaponization
 - Urban Terrain
 - High Degree of Weapon Integration
 - Network Centric Data Infusion

Conclusion

Munitions Directorate

Understanding AFRL's Role in Fuzing

- Continue to Investing in Science and Technology
 - Explore innovative funding options

- Dialog strategies with User and Industry
 - "Early and Often"

Visualize Long Term Fuze Requirements