

49TH ANNUAL FUZE CONFERENCE

R. Hutcheson Indian Head Division NAVSEA Surface Warfare Center

MK 80 MOD O FUZE BOOSTER: AN INSENSITIVE MUNITIONS (IM) REPLACEMENT FOR THE MK 44 MOD 1 FUZE BOOSTER

Craig Cornish

Technology Division Weapons Department Indian Head Division NAVSEA Surface Warfare Center

Harold McMillan

Code G22 Dahlgren Division, NAVSEA Surface Warfare Center

Distribution statement A: Unlimited - Approved for Public Release

Making Sea Power 21 a Reality

ACKNOWLEDGEMENTS

- Wish To Thank The Following Groups For Their Support:
 - IHD/NSWC For Their Support In Environmental And Performance Testing During The Development Of The Mk 80 Fuze Booster
 - NSWCDD For Their Support In Environmental And IM Testing During The Development Of The Mk 80 Fuze Booster
 - Raytheon For Their Support Throughout This Program
 - Reynolds System Inc. For Their Support In Manufacturing And Follow-on Work In Aging Testing To Support The Integration Of The Mk 80 Fuze Booster Into The AMRAAM System.

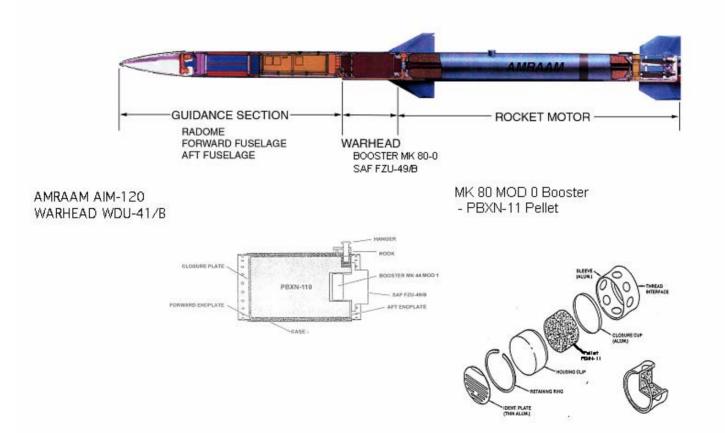
BACKGROUND

 The AMRAAM WDU-41/B Warhead Failed Fast Cook-off (FCO), Slow Cook-off (SCO) and Fragment Impact (FI) Insensitive Munitions (IM) Tests

	FCO	SCO	BI	FI	SD
WDU-41/B WHD (PBXN-110:~15 lbs.)	Defl	Defl	Burn	Expl Det*	Pass
				*Impact t	o CH-6 Boo

- AMRAAM Warhead IM Mitigation Concepts:
 - Composite Closure Plate Unsuccessful, concept discontinued
 - No significant FCO or SCO mitigation observed at the system level
 - Alternate Booster Explosive Successful, concept continued
 - Significant FI mitigation at the system level

OBJECTIVE


- To Identify A Safe And Suitable Replacement For The AMRAAM Booster Explosive, CH-6, To Address FI Test Requirements
- Alternate Booster Explosive program sponsored by the AMRAAM Program Office, Navy Insensitive Munitions Advanced Development (IMAD) program and Insensitive Munitions Technology Transition Program (IMTTP)

AMRAAM AIM-120 MISSILE CONFIGURATION

Distribution statement A: Unlimited

DAHL GREN

Surface Warfare Center Division

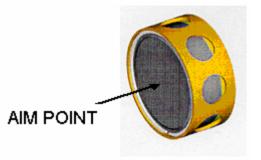
APPROACH

Phase I: Preliminary Testing and Explosive Down Selection

- Identify field of candidate explosives for evaluation
- Conduct preliminary evaluation of candidate explosives
 - Single fragment survivability test (booster only)
 - •Explosive Transfer Reliability tests (limited test series)
 - Review available explosives characterization data
 - Select two best explosive candidates for continued test
 - Armament Section-level FI tests (simulated warheads)
 - •All-Up-Round Missile-level FI tests
- •Explosive Selection Committee Recommendation

EXPLOSIVE CANDIDATES

- CH-6 Baseline
- PBXN-5
- PBXN-7
- PBXN-9
- PBXW-128 (Q)
- PBXW-11 (Q)

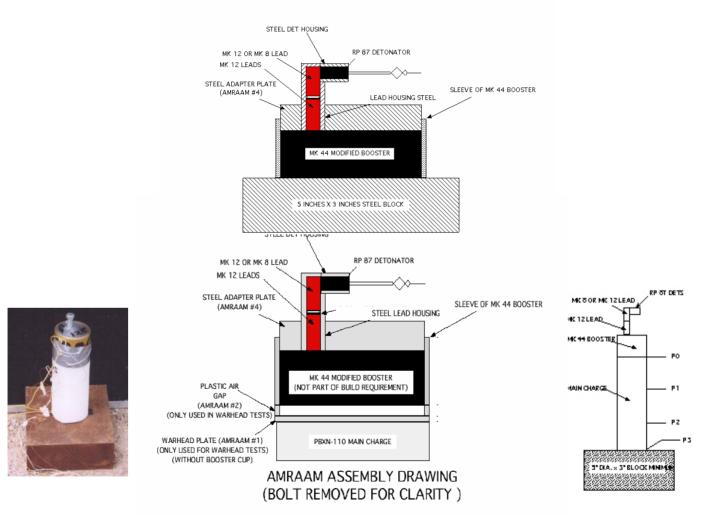

SINGLE FRAGMENT IMPACT TEST RESULTS

INDIAN HEAD

face Warfare Center Divi

- Identify the fragment velocity threshold (onset of violent reaction) for each candidate explosive
- PBXN-9, PBXW-11 and PBXW-128 ~ 6000 ft/sec

• CH-6 < 3500 ft/sec


	Sumn	nary of the Fragme	nt Impact Tests on	Various Explosiv	es	
Fragment						
Velocity						
Nominal			Explosive / Read	tion Level *		
(ft/sec)	CH-6	PBXN-5	PBXN-7	PBXN-9	PBXW-11	PBXW-128
6000	I/II**	1/11	1/11	V, I/II **	V **, I/II**	IV/V?, I/II **
4500	-	I/II **	I/II **	1/11	I/II **	V, I/II**
4000	-	-	1/11	I/II **	V	I/II **
3500	1/11	-	-	-	-	-
* Reaction Le	evels	1	Detonation			
		II	Partial Detonation	1		
		III	Explosive			
		IV	Deflagration			
		V	Burning			
"-" No Test P	erformed					
** Pusher Pla	ate hit the Booster	•				
? Unknown w	whether Flyer Plate	e Impacted Booste	r (No Witness Plate	e)		

TEST SET-UP FOR BOOSTER

AMRAAM BOOSTER ASSEMBLY DRAWING (BOLT BODY REMOVED FOR CLARITY (DRAWING AMRAAM #3))

4MR AAN

Distribution statement A: Unlimited

DAHLGREN

Surface Warfare Center Division

Explosive Transfer Tests – Lead / Booster

	PBXN-5	PBXN-7	PBXN-9	PBXW-128	PBXW-11	CH-6
Lead / Booster Pellet Detonation occurred	Yes	Yes	Yes	Yes	Yes	Yes
Average Block Dent Output (in.):	0.218	0.170	0.217	0.205	0.232	0.167

Explosive Transfer Tests – Booster / Main Charge (PBXN-110)

	PBXN-5	PBXN-7	PBXN-9	PBXW-128	PBXW-11	CH-6
Booster / Main Charge	Yes	Yes	Yes	Yes	Yes	Yes
Detonation occurred						
PBXN-110 Velocity	8.58	8.24	8.32	8.26	8.55	8.57
(mm/µsec): Average						
Block Dent Output						
(in.):*						
Test 1 (MK 8/MK 12)	0.650	0.700	0.640	0.746	0.737	0.675
Test 2 (MK 12 / MK 12)	0.709	0.683	0.699	0.709	0.720	0.724

*MK 8 and MK 12 leads used to initiate booster as shown

CHARACTERIZATION DATA FOR CANDIDATE REPLACEMENT BOOSTER EXPLOSIVES

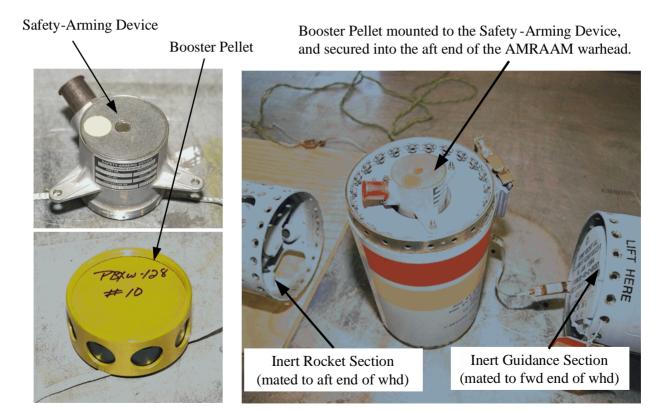
- No further testing of PBXN-9, PBXN-7, and PBXN-5 candidates required.
- PBXW-128 and PBXW-11 selected for continued evaluation

	CH-6	PBXN-5	PBXN-7	PBXN-9	PBXW-128	PBXW-11
Composition (Primary Ingredients)	RDX – 97.5%	HMX – 95%	RDX – 35% TATB - 60%	HMX – 92%	HMX – 77%	HMX – 96%
Impact Sensitivity (50% Height)(cm)	27	36	44-52	34	38.6	25
Friction Sensitivity (lbf)	250	418	> 980	420	> 980	315 (ABL)
Large Scale Gap Test (cards)	306 – 314 Cards	206 Cards	204 Cards	169 – 199 Cards	124 Cards	206 – 238 Cards
VCCT Data	0.015 wall Detonation (= 1.65 g/cc)					

ARMAMENT SECTION-LEVEL FI TESTS

- Simulated hardware differed from actual AMRAAM warheads

 Only 8.5-inches in length
 End plates not welded
 Case not internally broached
- Four test, two fragments per test
- Results unofficially scored as "Deflagration" o End plates thrown over 200 ft o Up to 85% of bulk explosive recovered



• Fragment Impact Test Hardware

• Fragment Impact Test Setup

Fragment Impact Test Results (PBXW-128 Booster)

AMRAAM WARHEAD WDU-41/B FRAGMENT IMPACT DEMO TEST (8/27/99) BOOSTER EXPLOSIVE - PBXW-128

 Fragment Impact Test Results (PBXW-11(Q) Booster)

Distribution statement A: Unlimited

• All-Up-Round Missile-Level FI Test Results Summary

	EMRTC	NSWCDD	NSWCDD
Date:	12/11/97	8/27/99	12/8/99
Configuration:	Simulated Guidance Section	Guidance Section (internal	Guidance Section (internal
	(no internal pressure)	pressure)	pressure)
	Inert Rocket Motor	Inert Rocket Motor	Inert Rocket Motor
Test Stand:	Suspended	Platform	Platform
Fragment Qty /	2	2	2
Primary Aim Point:	hary Aim Point: Booster (CH-6) Booster (PBXW-128)		Booster (PBXW-11)
Fragment Launcher:	Propellant Gun	Propellant Gun	Propellant Gun
Fragment Velocity:	8,197 ft/s	8,400 ft/s	8,200 ft/s
Debris Distance /	(Item Detonated)	All debris recovered within	All debris recovered within
Wt.:		30'	30'
		1 Fragment recovered in	booster housing broke into
		booster housing	several small fragments
		@17' / 3-4 oz of explosive	within 50' / 10% of explosive
		recovered remainder burned	recovered remainder burned
IM Score:	Type I (Detonation)	Type V (Burning)	Type V (Burning)
	(NAWCWD OHEB)	(NSWCDD IMRB)	(NSWCDD IMRB)

EXPLOSIVE SELECION COMMITTEE RECOMMENDATION

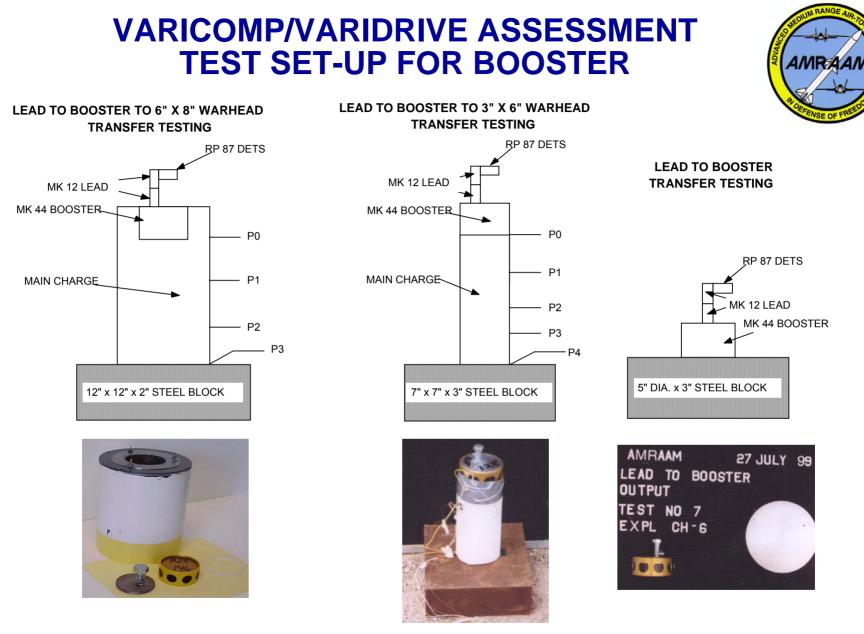
- Explosive Selection Committee Recommendation: PBXW-11(Q) (r =1.78 ± 0.03 g/cc)
 - Little difference in Fragment Impact for PBXW-11 and PBXW-128
 - Improved FI Response over CH-6
 - Possible Improved SCO Response over CH-6
 - PBXW-11 used in SABRE, JSOW, XM 80 Submunition
 - PBXW-128 was not qualified as a booster material and therefore additional testing would be required to ensure it's transfer reliability.
 - Pressed Booster current method used in production of CH-6
 - Improved System FI Response From Type I to Type V
 - Demonstrated PBXW-11 potential to meet System Requirements Based on Preliminary Transfer Tests

APPROACH

Phase II: Booster-Level Qualification and Performance

Tests

- Environmental and Qualification Tests
- Performance (Explosive Transfer Reliability) Tests
- DOA Diffusion Assessment
- Request PBXW-11(Q) Final (Type) Qualification for use as AMRAAM Booster
- Request Booster Final Hazard Classification


ENVIRONMENTAL, QUALIFICATION AND PERFORMANCE TEST MATRIX

	BOOSTER REQUIREMENTS	WARHEAD REQUIREMENTS
Test	PBXW-11	PBXN-110 (3" x 6")
Test sample requirements	s for environmental test	
Units used for environmental tests	40	
Environmental test sequence ¹	5	
Transportation Vibration	5	
Captive Carry and Missile Flight Vibration ¹	5	
14 Day Temperature and Humidity ¹	0	
28 Day Temperature and Humidity	5	
High Temperature Storage	5	
Thermal Shock	5	
1.5 Meter Drop	5	
12 Meter Drop ¹	0	
Jolt ¹	5	
Lead to Environmental Conditioned Booster And Booster to Warhead	16	16
165°F	0	0
Ambient	14	14
- 65 °F	2	2
1. Testing currently require	ed in AS-3427.	
2. Dent Output requireme	nt will be determine with this tes	ting.

Distribution statement A: Unlimited

Surface Warfare Center Division

EXPLOSIVE TRANSFER RELIABILITY TEST RESULTS

Lead - to - Bo	Lead - to - Booster Transfer		Warhead Transfer	Booster - to - Simu	lated Warhead Transfer
PBXW-11 Density	Mean Dent Output	PBXW-11 Density	PBXN-110 Warhead	PBXW-11 Density	
(g/cc)	(inches)	(g/cc)	Results	(g/cc)	Results
1.78	0.249	1.78	20 for 20 Transfer Functions	1.78	3 for 3 Transfer funtions for PBXN-110
1.30	0.148	1.30	3 for 3 Transfer Functions	1.25	3 for 3 Transfer funtions for PBXN-110
1.20	0.113	1.20	3 for 3 Transfer Functions	1.20	5 for 5 Transfer funtions for PBXN-110
1.10	0.068	1.10	3 for 3 Transfer Functions	1.15	2 for 2 Transfer funtions for PBXN-110
		1.00	0 for 3 Transfer Functions	1.20	1 for 2 Transfer Functions with PBXW-128

- VARIDRIVE: Evaluated PBXW-11 at densities from 1.78 g/cc to 1.00 g/cc
- VARICOMP: Evaluated PBXW-11 (density 1.20 g/cc) to PBXW-128 (77% HMX)
- Minimum average dent specified > 0.200" with no value below 0.160"
- Reliability of 99.99998% with a 95% Confidence level (ρ = 1.78 \pm 0.03 g/cc)

DOA DIFFUSION ASSESSMENT

•Accelerated aging tests were conducted to evaluate the effectiveness of various sealant materials in preventing Di-Octyl-Adipate (DOA) diffusion.

- Test Series 1: 200°F for 16 weeks, boosters assembled at NSWC
 - No sealant applied
 - DOA diffusion observed
- Test Series 2: 160°F for 22 weeks, boosters assembled at NSWC
 - Various sealant applied
 - Current sealant (Sylgard 170) should prevent DOA diffusion
- Test Series 3: 160°F for 2 weeks, boosters assembled by the manufacturer
 - Current sealant (Sylgard 170) applied using current process

Current booster sealant material and processes will prevent DOA diffusion

APPROACH

- Raytheon Vendor Qualification Tests
- Environmental Tests
 - o Aging Tests
 - **o Missile-Level Vibration Tests**
- Performance Tests
 - **o Booster Function Tests**
 - o Warhead Arena Tests
- All-Up-Round Level IM (FCO, FI) Tests
- Request Final (Type) Qualification for AMRAAM with Mk 80 Booster
- Request Final (Hazard) Classification for AMRAAM with Mk 80 Booster

AMRAA

RAYTHEON VENDOR QUALIFICATION TEST MATRIX

 The Current booster vendor, Reynolds Systems, successfully completed all vendor qualification tests
 Environmental, Qualification and Performance Tests (30 Units)

TEST	BOOSTER REQUIREMENTS
Transportation Vibration (+145°F)	15
Transportation Vibration (-40°F)	15
Temperature & Humidity	30
Captive Flight % Missile Flight Vibration (+170°F)	15
Captive Flight % Missile Flight Vibration (-50°F)	15
Radiographic Inspection	30
40-Foot Droop	3
Jolt	2
Function and Output	25

ENVIRONMENTAL TESTS

- Aging tests (160°F (71°C), 16 weeks) conducted by booster vendor, Reynolds Systems
 - o Mk 44 Mod 1 Boosters (2)
 - o Mk 80 Boosters (15)
 - o PBXW-11(Q) Pellets (5)
 - o No anomalies
- Vibration tests conducted by NSWC Dahlgren Division
 - o Vibration to worst-case missile levels measured during captive carriage
 - F-15, F-16, F/A-18C/D/E/F
 - o Mk 44 Mod 1 Booster (1)
 - o Mk 80 Booster (2)
 - o No anomalies

PERFORMANCE TESTS

- Booster Function Tests (42)
 - o Mk 80 Boosters were function tested as part of the vendor qualification (25 units) and aging test (15 units) efforts.
 - o Mk 80 Boosters were function tested as part of the missile-level vibration tests (2 units)
 - o All test results demonstrate that the Mk 80 meets or exceeds the performance requirements of the current Mk 44 Mod 1 Booster

Warhead Arena tests (2) were conducted by Raytheon at NTS

- o WDU-41/B Warheads configured with SAF and Mk 80 Booster
- o Both tests resulted in the warhead detonation
- o Warhead performance was unchanged

ALL-UP-ROUND LEVEL IM TESTS

- Fragment Impact Test (1)
 - o The first warhead FI test (Mk 80 Booster) was previously completed during Phase I
 - o A second warhead FI test (Mk 80 Booster) was required for official score
 - This test was also conducted at NSWC Dahlgren (May 03)
 - The warhead was configured with a PBXW-11(Q) Booster and confined by an adjoining Guidance Section and Inert Rocket Motor

o Test scored by NSWC IMRB as Type V, Burning reaction

FRAGMENT IMPACT TEST RESULTS (Baseline vs. Mk 80 Booster)

	EMRTC	NSWCDD	NSWCDD
Date:	12/11/97	12/8/99	5/13/03
Configuration:	Simulated Guidance	Guidance Section	Guidance Section
	Section (no internal	(internal pressure)	(internal pressure)
	pressure)	Inert Rocket Motor	Inert Rocket Motor
	Inert Rocket Motor		
Test Stand:	Suspended	Platform	Platform
Fragment Qty /	2 Booster (CH-6)	2 Booster (PBXW-11)	2 Booster (PBXW-11)
Primary Aim			
Point:			
Fragment	Propellant Gun	Propellant Gun	Propellant Gun
Launcher:			
Fragment	8,197 ft/s	8,200 ft/s	8,333 ft/s
Velocity:			
Debris Distance	Item Detonated	All debris recovered	All debris recovered
/ Wt.:		within 30'	within 5'
		booster housing broke	Booster remained
		into several small	attached to warhead.
		fragments	Most of booster
		within 50' / 10% of	recovered intact. Most
		explosive recovered,	of the PBXN-110
		remainder burned	consumed
IM Score:	Type I (Detonation)	Type V (Burning)	Type V (Burning)
	(NAWCWD OHEB (1))	(NSWCDD IMRB (2))	(NSWCDD IMRB (3))

Surface Warfare Center Division

ALL-UP-ROUND LEVEL IM TESTS

• Fast Cook-off (1)

- o Test required to verify that warhead FCO performance is not degraded
 - Current warhead FCO score is a Type IV, Deflagration
- o This test was conducted at NSWC Dahlgren (May 03)
 - The warhead was configured with a PBXW-11(Q) Booster and confined by an adjoining Guidance Section and Inert Rocket Motor

FAST COOK-OFF RESULTS

MASS AND RANGE OF RECOVERED DEBRIS

ITEM	MASS (lb)	RANGE (ft)	HAZARDOUS FRAGMENT
RADOME SECTION	6.55	75	YES
STAINLESS STEEL BAND	0.19	110	NO
STAINLESS STEEL BAND	0.19	144	NO

- Test scored by the NSWC IMRB as Type VI, Deflagration reaction o Radome debris distance is not attributed to booster performance
- The Mk 80 Booster will not degrade warhead FCO performance

SUMMARY

- The AMRAAM Alternate Booster Explosive Concept Demonstration and Transition programs have been successfully completed, identifying and qualifying a new explosive PBXW-11(Q), for use in the AMRAAM warhead booster
- The "Mk 80 Mod 0" nomenclature has been assigned to the new booster. The new booster hardware is unchanged from that of the current Mk 44 Mod 1 Booster
- The Mk 80 Mod 0 Booster is a suitable form-fit-function replacement for the Mk 44 Mod 1 Booster currently used in the AMRAAM WDU-41/B Warhead
- The Mk 80 Mod 0 Booster has been proven, through extensive testing, to improve the Fragment Impact performance of the AMRAAM warhead (from a "Detonation" to a passing "Burning" reaction). The Mk 80 Mod 0 Booster will not degrade current AMRAAM warhead Fast Cook-off performance (a "deflagration")
- Final (Type) Qualification has been granted at booster and system levels
- Final Hazard Classification has been granted at booster and system levels
 - o Proper Shipping Name: Booster [Without Detonator], UN0042
 - o Product Designation: Booster, Assembly, Mk 80 Mod 0
 - o NSN: 1336-01-515-0117
 - o UN Classification Code: 1.1d

o EX Letter: EX2004030001

REFERENCES

- 1. NSWCDD Ltr 8010.1 Ser G707/028 of 28 Feb 00, Insensitive Munitions Review Board (IMRB) Meeting on the AMRAAM Warhead Test Results for IM Mitigation Proposal
- 2. L.J. Montesi, K. E, Alexander, *Characterization of PBXW-11 Pressed Explosive*, Naval Surface Warfare Center, Indian Head Division, IHTR 1827, 8 April 1996.
- 3. P. F. Spahn, L. J. Montesi, *Detonation Transfer Reliability: VARICOMP and VARIDRIVE Using Energy Fluence and the Logistic Analysis*, Naval Surface Warfare Center, Indian Head Division, IHTR 2292, 25 September 2000.
- 4. IHDIV/NSWC Ltr 8000 Ser 4440/04-043 of 17 Mar 04, Request for Final (Type) Qualification of PBXW-11(Q) in the Mk 80 Mod 0 Fuze Booster
- 5. L. J. Montesi, J. Mackey, C. Peletski, *PBXN-9/PBXN-5 Dioctyl Adipate diffusion Studies*, Naval Surface Warfare Center, Indian Head Division, IHTR 2237, 11 February 2000.
- 6. Reynolds Systems Inc. Ltr of 16 Jan 04, *Mk 80 Fuze Booster P/N 2003AS500 Accelerated Aging Test by Reynolds Systems Inc.*
- 7. NAWCWD China Lake Ltr 8020 Ser 473300D/3584, Ordnance Hazards Evaluation Board (OHEB) Meeting Minutes of 18 June 1998
- 8. NSWCDD Ltr 8010.1 Ser 707/243 of 30 Jul 03, Insensitive Munitions Review Board (IMRB) Meeting on the AMRAAM Warhead (With Mk 80 Mod 0 Booster) Fast Cook-off and Fragment Impact Test Results
- 9. NAVSEA Ltr 8020 Ser N611/586 of 28 Apr 04, Final (Type) Qualification of PBXW-11 in the Mk 80 Mod 0 Fuze Booster
- 10. IHDIV/NSWC (Yorktown Det) Ltr 8020 Ser 2410B/365 of 4 May 04, PBXW-11 Final (Type) Qualification Nomenclature Assignment of PBXN-11
- 11. NAVAIR PMA-268 8020 AIR-4.1.1.6/AMRAAM of 5 Apr 04, Request for Final (Type) Qualification of the Mk 80 Mod 0 Fuze Booster for use in the AMRAAM WDU-41/B Warhead
- 12. NAVSEA Ltr 8020 Ser N611/706 of 26 May 04, Final (Type) Qualification of Energetic Material Used in the AMRAAM WDU-41/B Warhead

