

Pilot plant synthesis of triaminotrinitrobenzene (TATB) from a novel process

Prepared For 2004 IM/EM Technical Symposium

November 15-17, 2004 San Francisco, CA

Sharon Dressen, Douglas Merrill, Andrew Sanderson, Stephen Velarde*

Approved for public release by NSWC-Indian Head, 21September 2004

Outline

- Novel TATB process
 - Driving force behind development
 - Process overview
- Process results
 - Nitration
 - Alkylation
 - Ammonolysis
- Conclusions

Acknowledgements

- The funding for this work was provided to ATK Thiokol by the US Navy ManTech office
- Special thanks to Lori Nock, Al Stern, Chuck Painter, Jerry Salan, Tim Mahoney, John Brough (Navy), George Boyd (Andrulis), and Rob Schmidt, Alex Mitchell, Mike Coburn (DOE)

Why TATB Synthesis?

- Current production method produces undesirable waste (trichlorobenzene route)
- Future supplies of TCB uncertain could become a major cost driver for future TATB production
- Development of an alternate route to ensure uninterrupted supply of TATB for needed applications
 - environmentally acceptable waste streams
 - cost-competitive product (vs. current TATB)
 - uncomplicated and robust process to be credibly transitioned to production

TATB Advantages

- TATB could be utilized as a valuable material for achieving IM compliance
 - High density 1.93 g/cm³
 - High thermal stability
 - Low shock sensitivity

Compound	Impact sensitivity (N m)	Confined detonation velocity (m/s)
Nitroglycerine	0.2	7600
RDX	7.5	8750
TNT	15	6900
ТАТВ	50	7350

Source: Rudolf Meyer, <u>Explosives (3rd edition</u>), 1987, VHC Publishers, New York.

• TATB is already qualified in a number of systems

- Three-step process was proposed starting from phloroglucinol
 - phloroglucinol found in naturally-occuring glycoside derivatives
 - worldwide, approximately 140-200 metric tons of phloroglucinol are produced each year
 - numerous synthetic industrial routes (including demil of TNT)
- Proposed process first reported in UK by Bellamy, Golding and Ward
- Considerable route development performed at ATK Thiokol
 - necessary for scale-up consideration

TATB Transition to Scale-Up

- Lab scale
 - 1 g to <1000 g
 - multiple laboratory fume hoods
 - 5, 10, 22-L reactors (kilo bays)

- Kilogram scale
 - multiple kilograms
 - dedicated facility including remote operation capability
 - 50-L, 5 gallon reactors for batch processes
 - loop reactor and continuous reactor set-up for continuous operation

- Pilot facility
 - 100's lbs.
 - 20, 50, 200, 500gallon reactors
 - remote operations
 - dedicated operators

ATK THIOKOL INC.

Nitration

- Reaction exotherm easy to control
- Over 1,000 lbs. (450 kg) of TNPG produced
- Reaction yields have been greatly improved (from ~ 75% to >92%)
 - excellent scalability and reproducibility

Small scale safety data

Safety Test	TNPG
ABL impact (cm)	1.8
ABL friction (lbs)	800 @ 8 ft/s
Electrostatic discharge	1.86 J (mass ignition @ 8 J)

Alkylation

- Efficient, straightforward process
- High reactor loading levels
- Isolated yields >90%
- Triethylorthoformate used for cost considerations
- TETNB relatively insensitive and easy to handle

Small scale safety data

Safety Test	TETNB
ABL impact (cm)	64
ABL friction (lbs)	800 @ 8 ft/s
Electrostatic discharge	>8 J

Ammonolysis

- Simple process that can yield complicated results
 - particle size & shape, purity
- Target particle size 40-60 micron (to match current TATB spec)
- Yield generally >98%

Small scale safety data

Safety Test	ТАТВ
ABL impact (cm)	80
ABL friction (lbs)	800 @ 8 ft/s
Electrostatic discharge	2.7 J (no mass ignition)

Lot number	Particle size (µm) (10, 50, 90%)	
346-04-001	18.9, 21.9 , 25.6	
346-04-005	2.9, 4.3 , 6.8	TATB 345-04-005 20.0kV x1000 10µm
590-04-0158	18.5, 24.6 , 35.4	
346-04-006	32.7, 42.4 , 71.8	
346-04-007	21.7, 33.2 , 65.0	
346-04-008	18.7, 26.6 , 49.0	TATE 590-04-0158 20.0kV x250 50µm
346-04-009	42.2, 65.1 , 131.3	
346-04-010	37.1, 54.1 , 105.0	
346-04-011	21.6, 31.2 , 59.6	
346-04-012	60.5, 82.6 , 142.9	TATE 346-04-006 20.0KV x200 50µm +

TATB

- Purity determination was a concern due to TATB insolubility
- HPLC/MS used to identify impurities
 - ammonium diaminopicrate and 1-ethoxy-3,5-diamino-2,4,6trinitrobenzene are process impurities
 - quantification of impurities by HPLC an approximation due to similar absorbance spectra
 - TATB produced generally 95-99% pure

UV spectrum of TATB

UV spectrum of ADAP

TATB Thermal Behavior

• TATB possesses excellent thermal stability

Conclusions

- A novel process for producing TATB from phloroglucinol has been successfully transitioned from the lab to the pilot plant level
- The three step process reduces the environmental impact of TATB production when compared to the traditional trichlorobenzene route
- TATB particle size control possible via the current route
- The TATB produced under this effort will undergo extensive testing and evaluation at the completion of the program