Nitrocellulose Specification: In need of Analytical Resuscitation

A. Faburada, Armtec Defense

N. Campesi, ARDEC

N. Eldredge, ARDEC

L. Fishbein. ARDEC

L. Lopez, ARDEC

B. Mrazek, St. Marks

K. Murphy, ARDEC

H. Raines, St. Marks

J. Rutkowski, ARDEC

M. Paquet, Expro TEC

T. Williams, ATK RFAAP

N. Zink, ARDEC

C. Zisette, ATK RFAAP

NDIA IM/EM Symposium San Francisco, CA November 15th -17th 2004

- Introduction
 - Presentation goals
 - Contents of MIL-DTL-244
 - What is Nitrocellulose
 - Why change the specification
- Progress of the Integrated Product Team
 - Options available for specification change
 - Current test methods
 - Critique of analytical techniques
 - Proposed specification changes
 - Validation process
- Summary

MIL-DTL-244B <u>WAS</u> a great document that focused on NC stability/testing and not on propellant performance

Resuscitating Nitrocellulose Specification

- Inform the DoD community of the IPT's intent
 - Analytical upgrade of the NC military specification
- Enhance the community-wide understanding of nitrocellulose and its influence on end-item performance

Program will serve as a model for future modifications to military specifications

What is MIL-DTL-244?

- MIL-DTL-244 originated 1940's
 - Analytical knowledge from late 19th & early 20th century
- Describes the NC requirements
- Primarily a <u>Performance</u> Specification
 - Sole manufacturing section
 - Stabilization of NC
 - Analysis section details test methods and desired chemical/physical properties

Nitrocellulose: Long and Storied Existence

- Discovered in the mid-1800's
 - First synthesized by Schönbein, highly unstable
 - Abel perfected the purification process allowing "safe" manufacture
 - First Application: Black powder replacement
 - Other: Early photographic film
- Primary component in 1st commercially available thermoplastic
 - Celluloid 70% NC & 30% Camphor
 - Applications: Billiard and table tennis balls, toys, fountain pens, knife handles
- Current Applications
 - Lacquers, Nail polish, Filter Media, Energetic products across entire DoD agency

Updating the analytical methods in MIL-DTL-244 will enhance all energetics programs

- Preserve community knowledge
 - Corporate/Government wisdom of NC properties and processability needs to be retained
- Enhance technical understanding of nitrocellulose
 - Link between NC and propellant processability/performance
 - Use analytical data to drive the NC process
- Improved analytical reliability
 - Better characterization techniques results in improved laboratory precision and efficiencies

Several options for updating a military specification were considered

- Specification rewrite options available
 - Performance Specification
 - Too general, Limited control
 - Army Specific Specification
 - Time consuming process, No association with MIL-DTL-244B
 - Amendment
 - Extensive coordination effort
 - Interim Amendment
 - Army applications, Linked to MIL-DTL-244, Less time extensive

IPT Best Option: Interim Amendment

Analytical methods in MIL-DTL-244

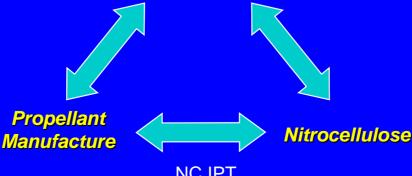
Test Method	Analytical Significance
Nitrogen Content	Measure degree of nitrate ester substitution
Ether-Alcohol Solubility	Establish low N ₂ NC content and possible contamination
Acetone Insoluble	Purity test
Ash	Accounts for non-combustible impurities
Viscosity	Indirect measure of degree of polymerization
Fineness	Indirect measure of fiber length
134.5°C Heat Test	Direct of measure of NC stability, Acidic species
65.5°C Heat Test	Direct of measure of NC stability, Neutralization salts
H ₂ 0 and Alcohol Content	Quantification of total moisture and volatiles

Analytical methods built on turn-of-thecentury technology

Test Method	Strength of Analytical Method	Weakness of Analytical Method
Nitrogen Content	 Simple, reliable semi- automated titration 	 Stability concerns of titrant Test variability reduces manufacturing options
Ether-Alcohol Solubility	 Simple analysis Good indicator of manufacturing issue 	 Low precision Does not truly reveal the processability of the NC blend Requires specialized glassware
Viscosity	 Simple analysis 	 Not "true" dilute solution characterization
Fineness	 Simple and relatively quick analysis Best method available at the time 	 No quantification of fiber length distribution Outcome does not quantify processability of NC
H₂0 and Alcohol Content	 Simple gravimetric technique 	 Time intensive Unable to differentiate H₂0 from alcohol content

Analytical methods will improve understanding and guide manufacturing process

Test Method	Proposed New Method	Benefits
Nitrogen Content	 Investigate applicable titration technologies Improve experimental control 	 Improved electrode response Reduction in experimental variability
Ether-Alcohol Solubility	 Gravimetrically determine insoluble fraction Develop rate of dissolution test 	 Eliminate need for specialized glassware Understand relationship between NC and propellant manufacturing
Viscosity	 Implement dilute solution characterization techniques 	 True molecular weight characterization
Fineness	 Computer controlled optical and image processing unit Quantify fiber dimensions 	 Directly measure fiber properties Correlate with new solubility information
H₂0 and Alcohol Content	 Implement moisture analyzing technology 	Real-time dataDifferentiate alcohol and water content



Validation will occur through extensive R&R studies, side-by-side analyses, and laboratory round robins

The purpose of this program is not to eliminate or simplify the specification

- MIL-DTL-244 should be made more specific and provide more guidelines
 - Implementing improved analytical tools are an important improvement
- The purpose of the analytical tools are:
 - Confirm compliance
 - Guide manufacturing process
 - Understand and predict performance

Analytical Tool

