Roxe Propulsion systems

The Evolution of IM Rocket Motors for Anti-Armour Application By Konrad Nofer (Roxel UK) and Raymond Coleno (Roxel France) Paper Prepared for NDIA IMEMT Symposium, 15-17 Nov 2004

This document is the property of Roxel and must not be copied, reproduced, duplicated nor disclosed to any third Party, nor used in any manner whatsoever without prior written consent of Roxel © Roxel 2004

Contents

- Summary
- Introduction
- Early Pedigree Rocket Motors (up to 1980's)
- Next Generation (late 1980's through 1990's)
- Current Developments
- Conclusion
- References

Summary

- Anti-armour missile systems with Roxel rocket motor grains singled out
 - High production volume
 - Particular IM difficulties
 - Notably, Minimum Smoke propellants required
- Early motors (some still in service) had reasonable IM performance
 - 1.3 Class propellants
 - No monolithic steel cases
- IM shortcomings identified and considered thro' 1990's to present day
- Current development and future anti-armour projects with Min Smoke propellant rocket motors are now capable of full IM compliance
- Scope for improvement in higher energy and density 1.3 propellants

- High volume
- Simplicity and low cost
- Minimum Smoke propellant
 - Some with secondary flame suppression
 - For Stealth, Guidance, Survivability
- Man portable, ground vehicle, helicopter launch
- Ranges up to 8km +

Introduction - Roxel Anti-Armour Missile Propulsion (cont)

• IM characteristics of earlier rocket motors

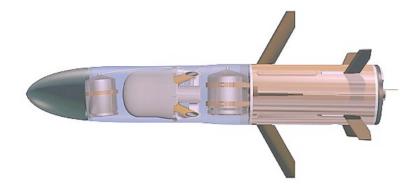
• IM shortcomings

• IM improvements with state-of-art techniques

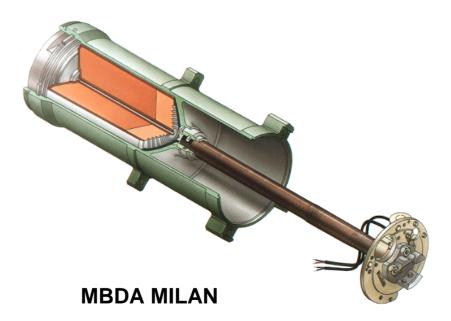
Anti-Armour Missile Systems with Roxel Grains

Missile Data

System	Guidance	Launch Platform	Range (m)	Initial ISD/ Nos.
LAW 80	Unguided, spotting rifle	Man portable	500	~1985
Vigilant	Wire-guided	Vehicle	1600	1964
Swingfire	Wire-guided, optically tracked	Vehicle	0 - 5000	1969/ 44000
RBS 56	SACLOS, wire- guided	Man portable/ Vehicle	150 -2200	1988
MILAN	SACLOS, wire- guided	Man portable/ Vehicle	2000	1972/ >350000
НОТ	SACLOS, wire- guided	Vehicle/ Helicopter	75 - 4000	1974/ >85000
ACL89	Unguided	Man portable	400	1975
APILAS	Unguided	Man portable	25 - 350	1983


Anti-Armour Missile Systems with Roxel Grains

Rocket Motor Characteristics


For Missile System	Case Material (OD (mm)	Propellant		Standard SI (s)		■ NOL Cards	
		()	В	S	В	S	В	S
LAW 80	KOA	102	HTPB	-	248	-	0	-
Vigilant*	Al. alloy	114	CDB	CDB	226	224	28	26
Swingfire*	Al. alloy	165	CDB	CDB	226	223	27	30
RBS 56	Al. alloy	116	CDB	-	236	-	29	-
MILAN*	Al. alloy	87	CDB	CDB	212	214	< 70	< 70
НОТ	Al. alloy	120	EDB	CDB	220	211	70	85
ACL89	Al. alloy	89	EDB	-	226	-	74	-
APILAS	Kevlar	112	EDB	-	226	-	74	-

* Dual propellant Boost (B) – Sustain (S) single grain main motor

- **Key** : CDB = unfilled (no nitramines) conventional cast double base
 - EDB = unfilled extruded double base
 - NOL = United States Naval Ordnance Laboratory Large Scale Gap Test
 - KOA = Kevlar overwound aluminium
 - B = boost phase, S = sustain phase
 - Red = predicted by read across from similar propellant

Bofors RBS 56 (BILL)

Anti-Armour Missile Systems with Roxel Grains

Estimated IM Rocket Motor Responses

For Missile	FCO	SCO	BI	FI		
System				1830 m/s	2530 m/s	
LAW 80	V	I/ III	V	V	V	
Vigilant	IV/ V	III	V	V	V ²	
Swingfire	IV/ V	III	V ¹	V	V ²	
RBS 56	IV/ V	III	V	V	V ²	
MILAN	IV/ V		V	V ²	V ²	
НОТ	IV/ V	III	V	V ²	Not known	
ACL89	IV/ V		V	V ²	Not known	
APILAS	IV/ V	III	V ¹	V ²	Not known	

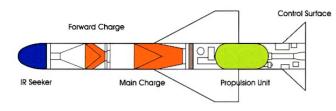
1 = measured response

2 = the possibility of Type V is strong on 'low propellant sensitivity' grounds, although practical evidence is tenuous

NB – IM WAS NOT A DESIGN CONSIDERATION

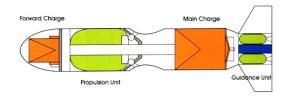
IM Performance Summary

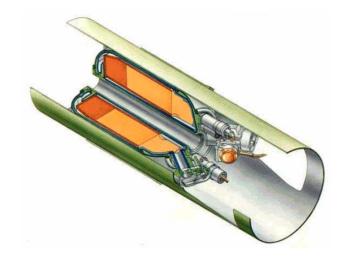
- Predicted relatively benign responses
 - Low sensitivity propellant (non-use of energetic fillers)
 - Relatively easily weakened cases
 - Note the absence of monolithic steel cases
- IM shortcomings
 - Slow cook off
 - Fast cook off improvement
 - Constraint on 'low card gap' Minimum Smoke propellant (for Fragment Impact)

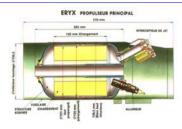

- Roxel Fr rocket motors for
 - Long Range (LR) TRIGAT
 - Medium Range (MR) TRIGAT
 - ERYX
- MURAT (IM) requirements a consideration
 - Hybrid case construction
 - Kevlar overwound thin aluminium shell

Missile Data

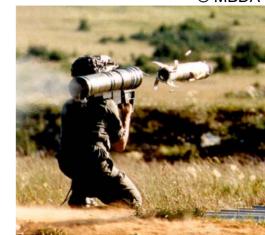
System	Guidance	Launch Platform	Range (m)
LR TRIGAT	Passive IR	Helicopter	500 - 5000, extendable to 8000
MR TRIGAT	Coded laser beam riding	Man portable	200 - 2400
ERYX	Wire-guided, optically tracked SACLOS	Man portable	50 - 600

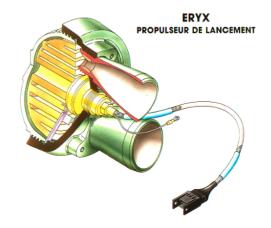

- LR TRIGAT
 - Hybrid case
 - Min Smoke nitramine filled CDB propellant
 - FCO Type V to STANAG 4240
 - BI Type V to STANAG 4241


Bullet Impact Trial


- MR TRIGAT
 - Hybrid case
 - Min Smoke unfilled CDB propellant
 - < 70 cards NOL
 - FCO Type V demonstrated
 - BI Type V predicted
 - FI Type V predicted with STANAG 1830m/s fragment

Fuel Fire Trial

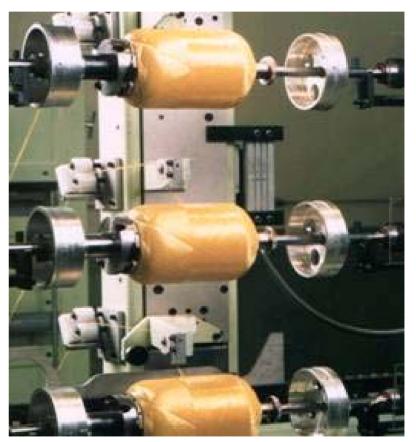




- ERYX Main Motor
 - Hybrid case
 - Min Smoke unfilled CDB propellant
 - 77 cards NOL
- ERYX Eject Motor
 - Aluminium alloy case
 - Min Smoke unfilled EDB propellant
 - 74 cards NOL
- At system level

oxe

- BI Type V demonstrated
- FCO Type V demonstrated
- SD no propagation



© MBDA

Roxel Fr Hybrid Case

For Example : ERYX

- 'Design for IM' now a major priority
- Special attention to
 - SCO mitigation
 - More readily IM degradable case structures
 - e.g. SSL, GC
- But still energy/density compromise with Min Smoke propellants for low sensitivity
 - e.g. Nitramine loading limitation
- Current examples of Roxel anti-armour rocket motor development
 - UK SLIM
 - US JCM

Current Developments - SLIM

Note

Further information on SLIM is included in a separate presentation at this NDIA Symposium

- SCO mitigation
 - Temperature sensitive venting mechanism
- SSL case

oxe

- EMCDB unfilled propellant
 approx 50 cards NOL
- BI : Type V demonstrated to STANAG 4241
- FCO : Type V demonstrated to STANAG 4240

Bullet Impact Trial

© UK MoD

© UK MoD

Current Developments - SLIM

– Based upon Roxel IM Hellfire motor

– IM trialled to MIL-STD 2105

MIL-STD 2105 Test	FCO	SCO	BI	F	-I
2105 1651				1830 m/s	2530 m/s
IM Hellfire	V	V	V	V	I

Current Developments - JCM

Note

There is a specific presentation on JCM at this NDIA Symposium

• Roxel supply grain and igniter, Aerojet is motor prime contractor

- SCO mitigation
 - Temperature sensitive venting mechanism
- Dual propellant cartridge loaded charge
 - Boost 50 cards NOL
 - Sustain 26 cards NOL
- FCO and FI (>1,830 m/s)
 - both Type V demonstrated to MIL-STD 2105 & STANAG 4439

Fuel Fire Trial

© Roxel/ Aerojet

Conclusion

For Anti-Armour systems with Roxel grains :

- IM rating for earlier motors has never been poor
- IM shortcomings identified and given attention
 - Notably SCO mitigation
- All future projects are to be fully IM compliant
 - No worse than Type V (except for SR Type III)
- Roxel involvement with UK IM Hellfire, US JCM
 - Full IM compliance with Minimum Smoke propellants
 - Also, in the future for such projects as MCT (Missile de Combat Terrestre)
- Improvements sought
 - Mainly for 1.3 Class high energy and density formulations
 - IRDX

OXe

• Ballistic versatility also important

- 'Roxel Approach to IM Rocket Motor Design' by Konrad Nofer and Jim Fleming (Roxel Group), NIMIC/ DOSG Workshop, 29 September – 2 October 2003
- 'Minimum Smoke 1.3 Hazard Class High Performance Rocket Motors with IM' by Jim Fleming and Jean-Claude Nugeyre (Roxel Group), NDIA IM & EM Technology Symposium, 15 – 17 November 2004
- 'Aerojet/ Roxel Minimum Smoke 1.3 Hazard Class Rocket Motor for JCM' by Patrick Wolf (Aerojet Inc.) and Jim Fleming (Roxel Group), NDIA IM & EM Technology Symposium, 15 – 17 November 2004

