Experimental Support of a Slow Cookoff Model Validation Effort

NAV

Weapons Division

A. I. Atwood, P. O. Curran, M. K. Rattanapote, D. T. Bui, O. E. R. Heimdahl Research Department

2004 Insensitive Munitions & Energetic Materials Technology Symposium San Francisco, Ca 15-17 November 2004

Unclassified

Technical Challenge

 To generate a set of experimental data that can be used to validate cookoff models currently under development

Prediction capability for not only time to reaction but reaction violence

Why Bother?

Cookoff hazard - Four Carriers

- USS Oriskany (1966) 44 killed, 156 injured, 3 aircraft destroyed, \$63.6M
- USS Forestal (1967) 134 killed, 162 injured, 21 aircraft destroyed, 43 aircraft damaged, \$758M
- USS Enterprise (1969) 28 killed, 343 injured, 15 aircraft destroyed, 17 aircraft damaged, \$554M
- USS NIMITZ (1981) 14 killed, 48 injured, 3 aircraft destroyed, \$150M

220 killed, \$1525.6M - None under attack

Needs

- Ship Commanders need information
 - How long sailors have to fight fire?
 - What are the most vulnerable munitions?
 - Can munitions load-out reduce vulnerability?
 - What are the consequences of cookoff reaction?

Leveraged Program

- Joint effort between Navy and DOE
 - Navy working under ONR
 - NAWCWD-CL
 - NSWC IH
 - DOE working under MOU
 - LLNL
 - SNL
 - LANL (partial)

Approach

- Three year project initiated by DOD Office of Munitions based on meeting success criteria
 - Time to reaction \pm 10 %
 - Temperature at reaction ± 10 %
 - Degree of reaction violence
 - Location of reaction
 - Extent of reaction
- Phase I (FY00)
 - Simple geometry
 - Single sample
- Phase II (FY01/02)
 - Increased geometric complexity
 - Different materials
- Phase III (FY02/03)
 - Predict ordnance item in cookoff

Phase I

-Simple geometry

-Single sample

Phase I Test Fixture

Type 4130 Steel Tube Length ~ 229 mm Explosive Length ~ 102 mm

Experimental Variables Confinement Ullage Heating profile

FORMULATION OF PBXN-109 COMPOSITION ANALYSIS

• Mix 991206

INGREDIENT	WEIGHT PERCENT
RDX	64.94
BINDER	14.09
ALUMINUM	20.97

Only mild reactions observed in all conditions tested

Phase II

-Increased geometric complexity

-Different materials

Phase II Energetic Materials

Energetic Material	Composition – Wt %
PBXN-109	65% RDX, 15% HTPB, 20% Al
LX-10	95% HMX, 5% VitonA
PBX9501	95% HMX, 2.5% BDNPF/A, 2.5% Estane
PS-1	70% AP, 10% HTPB, 20% Al

Type 1018 Steel Test Fixture

ID ~ 22 mm Tube Length = 250 mm Center wall = 2.54 mm Explosive Length ~ 102 mm 65-95 grams energetic

Thermocouple Placement


```
UNCLASSIFIED
```

Thermocouple Data

Strain Gage Placement

Strain Gage Data

Phase II Results

Material	Free Volume - CC	Reaction Temperature, C	Fragments
PBXN-109	4	169.0	1
LX-10	6	205.0	9
LX-10	1	197.1	7
PBX9501	4	185.0	15
PBX9501	1	185.6	108
PS-1	4	238.0	3

UNCLASSIFIED

Fragmentation

PBXN-109

PBX9501

Phase II Porosity Study LX-10

Percent TMD	Free Volume - CC	Reaction Temperature, C	Fragments
98	1	197	7
99	6	205	9
85	10	204	15
85	15	202	5
75	20	202	208
75	25	203	15

UNCLASSIFIED

LX-10 Porosity Study

98 %TMD, 1 cc free volume 75% TMD, 20cc free volume

LX-10 Strain Rate Comparison

Phase III

-Predict ordnance item in cookoff

Phase III Heavywall Penetrator (HWP)

• Dimensions

Total Length	17.8"
Outer Diameter	8.0"
Wall	0.5"
Aft Plate	0.5"
Nose Plate	1.5"
Liner	0.06"
Interior Volume	573.6 in ³
Weights	
Empty	81.2 lb
Typical Load	33.8 lb
Total	115.0 lb

Material 4130 steel

UNCLASSIFIED

Modified HWP Aft Closure

HWP - Two heating configurations

Configuration 1

End heating

Mica

Configurations 1 and 2 Quick ramp to 150 deg C side = 3.3 deg C/min end = 2.6 deg C/min Soak 5 hours Slow ramp at 0.05 deg C/min

Configuration 2 Side heating

Silicon Rubber

Sample

• Inert Explosive – one HWP cast

Ingredient	Weight percent
Glass beads	71.3
Binder	28.69
Blue dye	0.01

• PBXN-109 – two HWP cast

Ingredient	Weight percent
RDX	64.87
Binder	15.62
Aluminum	19.51

HWP Results

- End heated
 - Cookoff at 1015.0 min (16.9 hr)
 - Maximum temperature of 181.4 °C at control TC (184.8 °C predicted)
 - Externally mounted on down facing forward end
 - Ignition at center of forward end (as predicted)
- Side heated
 - Cookoff at 654.4 min (10.9 hr)
 - Maximum temperature of 176.6 °C at internal TC in center about one inch from wall
 - External control TC at 163.8 °C (165.5 °C predicted)
 - Ignition off center near wall (as predicted)

End Heated HWP

End Heated HWP

Mica Heater

UNCLASSIFIED

HWP End Heated PBXN-109

Note

HWP End Heated 16.9 hrs

Inert

Live

Strain Gage Data

HWP End Heated PBXN-109

Post test

UNCLASSIFIED

HWP End Heated PBXN-109

Recovered cylinder

Exterior of aft end fragment End plate in place - bolts sheared

30.56 lbs explosive recovered

Side Heated HWP

Side Heated HWP

Silicon rubber heater

HWP Side Heated PBXN-109

HWP at test site

Side Heated HWP

HWP Side Heated PBXN-109

Cylinder located 550 feet from test pad Aft end fragment located 415 feet from test pad 9.44 lbs explosive recovered

HWP: Simulation vs. Experiment

Comparison with Simulation Results

Note: Cases 1-9 were *a priori* simulations, case A (end heated) was done afterwards.

- Simulations were real predictions (Inert tests were used to estimate heat loss BC's for live tests)
- Data fell within range of predictions
- Improvements can be made with more thorough knowledge of boundary conditions

Accomplishments

- Slow cookoff model validation effort contributed to development of protocol for slow cookoff
- Platform for collaboration
 - Small scale experimental design
 - Placement of thermocouples and strain gages
- Range of reaction violence was demonstrated in small scale experiment
 - HMX containing explosives were most violent
 - Porosity contributes to reaction violence
- Full scale experiments demonstrated importance of geometry and boundary conditions
 - Initial ambient air conditions

Where do we go from here?

- Apply experimental and analytical tools to real problems and realistic heating profiles
 - Ordnance design
 - Fire fighting tactics
 - Magazine design
 - Captive carry
 - Development of a sub-scale bonfire test -TB700-2

