Crystal Growth of Micronized Cyclotrimethylenetrinitramine (RDX) Preliminary Study

Brian Alexander * Andrew Wilson Curtis Teague

Briefing Aims

Background

- Micronized RDX (FEM RDX) Shows an Effect in Reducing Sensitivity of Explosive Formulations to Unplanned Stimuli compared to that of conventional product classes of RDX
- Micronized RDX Allows for a Narrow Size Distribution and General Uniform Shape
- HSAAP Expanded Manufacturing Infrastructure to Include Micronized RDX
- Facility Currently Supporting the 60 mm Mortar and 155 mm Artillery Programs

Study Goals

- Determine Impact of Storage or Shipping Conditions on the Material Particle Size
- Answer Key Questions:
 - Does Any Change in Particle Size Occur?
 - Is the Material Agglomerated or Are Particle Forces Influencing the Test Results?
 - Storage Life of FEM RDX?
- Determine Acceptability of FEM RDX After Study

Approach

- Evaluation of FEM RDX Under Differing Conditions
- 4 Samples Divided from 25 lb. Bulk Sample
- Samples Placed in Velostat Bags
- Conditions:
 - Temperature Controlled Environment
 - Humidity Controlled Environment
 - 15% Water Wet (by Mass)
 - Dynamic Environment
- Analysis Conducted Using a Laser Diffraction Technique

HSAAP Fluid Energy Milling Facility

- Production Scale
 Sturtevant Micronizer Mill
- Feed and Flow Rates Dictate Particle Size
- RDX Capabilities to <2.8µ mean particle size
- Material Collected in Material Beds
- Material Ready for Use or Packaging

Instrumentation

Laser Diffraction Technique
 Malvern Mastersizer 2000
 Hydro 2000G Dispersion Unit
 Wet Analysis

- Main Purpose is to Begin Breaking Down the Inter Particle Forces
- Detergents/non-ionic Surfactants and Solvents can be Used as Wetting Agents and Dispersion Aids

Particle Adhesion Forces

Particle Size (mm)	Force of Gravity (g)
10 mm	100 g
1 mm	1000 g
0.1 mm	10 ⁴ – 10 ⁵ g

Davies, CN, Aerosol Science, Academic Press, London and New York, 1966.

Analysis

Samples Riffled Before Analysis • FEMRDX Place into Sample Container with Wetting/Dispersion Agents Ultrasonic Energy Applied Sample Addition to Instruments Dispersion Unit Material Analysis - 20,000 individual snapshots Software Statistical Package Generated Particle Size Distribution

Temperature Controlled Data

50th Percentile: Temperature Controlled

Humidity Controlled Data

50th Percentile: Humidity Controlled

Dynamic Environment Data

50th Percentile: Dynamic Environment

15% Water Wet Data

50th Percentile: 15% Water Wet

50th Percentile Comparison

Conclusions

All Material Showed Evidence Of Size Increase

- Not Restricted to Certain Storage Configurations
- Relatively Slow Rate in Dry Samples
- Wet Sample Showed Significant Change in the Shortest Duration
- Particle Forces Played Heavy Role in Analysis
 - Large Variance of the 90th Percentile
- Storage Life
 - Dry Samples Met Specifications at End of Study
 - Water Wet Sample was Non-Spec Compliant within first 25 Days

Recommendations

Process the FEM RDX into Premix Formulations (Desensitized and Dry)

- Coated with suitable plasticizer, polymer, etc
- Tailored to customer applications

Repeat the Study Due to Lessons Learned

- Adhesion Forces
- Sample Introduction to Analysis System

Growth studies in Varying Solvents

 Due to Certain Customer Application Requirements of Wetting Agents Other than Water

Acknowledgements

Ms. Lisa Jones and Bert Jasper (OSI) for support of the experimental work and for conducting testing on the material.

