Mitigating Shaped Charge Jet Impact

John Niles, Steven Nicolich and Bruce Williamson US Army Research, Development and Engineering Command

> Armaments, Research, Development and Engineering Center

Picatinny Arsenal, New Jersey 07806-5000

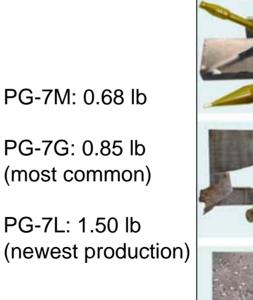
and

Dr. Daniel Doll, Nikki Rasmussen, Steve Bradley and

Les Bracken ATK Thiokol

Corrine, Utah 84307

15 November 2004


RPG-7V with round

Perspective

Two of the Top Threats to US Forces in Current Operations

- Improvised Explosive Devices (IEDs)
 - Car bombs
 - Roadside mines, etc.
- Rocket Propelled Grenades (RPGs)
 - PG-7 series, 85mm warheads
 - RPG-7 system

PG-7VR

UNCLASSIFIED

Importance of Defeating SCJ

- Most Armored Fighting Vehicles (AFVs) are light and highly susceptible to RPGs
 - Typical armor is aluminum (except tanks)
 - Reactive armor is heavy and can be neutralized using various tactics
 - Successful attacks are highly dependent upon what is hit
 - Hitting stowed munitions usually results in loss of platform and personnel
 - Logistic vehicles are even more vulnerable
- SCJI-resistant explosives
 - Catastrophic damage from stowed/transported ammo is avoided
 - Suppression of violent reaction significantly improves probability of survival for personnel and platform
 - Sympathetic detonation will also be suppressed (no detonation, no SD)
 - SD barriers can be eliminated, reducing weight and allowing more design options
 - Other IM threats will also be mitigated
 - Attacked logistic vehicles loads may be salvageable
- US AFV design constraints limit other options such as barriers or additional armor
 - C-130 volume and weight envelope: 18 ½ ton maximum

IM Threat Summary

- Thermal Threats (FCO/SCO)
- Sympathetic Reaction
- Bullet and Fragment Impact

• Shaped Charge Jet Impact

- Threat characteristics understood
- Mitigation solutions are available
 - Energetics
 - Barriers
 - System design
- Threat characteristics understood
- Mitigation solutions not available
 - Barriers not feasible except in main battle tanks
 - Mitigation design features exist for small items only (Spider, etc)
 - IM SCJI test normally assessed to fail (detonation), or, assessed as not a threat!
 - An energetic solution is the only solution and is practical for many applications

Shaped Charge Warheads

Shaped Charge warheads; used in many weapon systems

Threat Munition		Warhead Diameter
Artillery Submunitions		20-40mm
Surface to Surface Missile Sub-m	50mm	
Shoulder Launched Viper	65mm	
Shoulder Launched PG- 7 series		85mm
Anti-Tank Guided Munition		115mm & up
Shoulder Launched PG- 7 series	65mm	

- SCs are used extensively in every conflict
- SCJ will remain a major threat for the foreseeable future
 - Larger SCs can be mitigated through tactics (law of diminishing returns)
 - RPGs and smaller SCJs can be mitigated through energetics solutions

The effort to address this threat is long overdue

Iraq: HMMWV That Was Hit With 3 Rocket Propelled Grenades

Bar Armor in Iraq

RPG Attack Baghdad July 14, 2004

Mitigating SJCI

- A rapid response effort is underway to provide munition resistance to shaped charge jet impact using a variant of PAX-21 melt pour explosive
 - Dense, less energetic additives have been found to suppress the violence of response without compromise of fragmentation performance
 - Specific suppressive mechanism(s) have been identified
 - 81mm, M821A2E1 HE loaded cartridge (mortar) body used as target munition.
 - Explosive candidate has been labeled PAX-35: formulated as a Composition B replacement
 - Type 4 reactions have been obtained against 50mm (Rockeye) threat munition
- Efforts continue to improve resistance: threat focus is the PG-7 series 85mm RPG
 - Smaller SCs will be easily mitigated by this effort
 - Tests are being conducted directly against munition with standoff
 - No conditioning barrier to simulate worst case: attacks on logistics trains (supply trucks, no armor)
 - Follow-on studies will be conducted with armor to assess AFV survivability
 - Additives may work in pressed explosives as well as melt pours
 - Lethality trade-offs may have to be examined for higher performance munitions (no free lunch, just blue plate special)

Program Approach

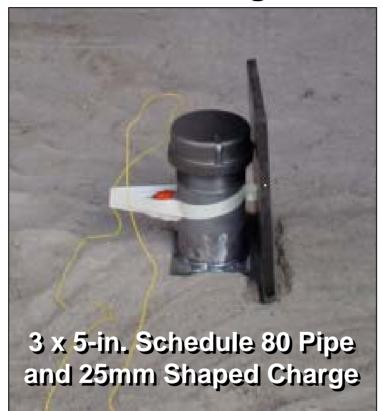
- Capitalize on initial additive discovery
 - Identify similar materials
 - Examine additives for optimum characteristics
 - Castability
 - Cost
 - Producibility
 - Formulation optimization
 - IM threat response
 - Develop inexpensive and simple screening tool(s)
 - Perform subscale tests: lethality, IM characteristics, etc.
 - Concentrate on direct munition attack: follow-on w/behind armor effects
 - Downselect best candidate(s) for...
 - Castable formulations
 - Pressed formulations
- Optimize formulations (starting with PAX-35)
- Transition to appropriate munitions IM programs

Optimizing PAX-35

- Additive A increases formulation viscosity due to bonding among selected desired molecules
- Initial PAX-35 formulation with Additive A was castable, but not very pourable
 - Additive A has potential as a pressable explosive binder material
 - Additive A has been replaced with an improved pourable material (Additive B) that minimizes intermolecular bonding characteristics, but still retains dense, desensitizing chemical moieties
- A number of additives with very improved pouring characteristics have been identified and are undergoing down selection for fragmentation munitions

Desensitizers: Dense and Reduced Energy

Comparison With Typical Binders: IM Without Performance Compromise


- The reduced energy additives maintain high C-J pressures and velocities because they contain specific, dense chemical moieties
- Less energetic binders usually require high amounts of nitramines to maintain performance: may be problematic for SCJ resistance
- Higher performance explosives require trade-offs between SCJ resistance and lethality

Biner	MP (°C)	Density (g/cc)	C-J pressure (GPa)	C-J Velocity (km/s)
2,4- dinitroanisole	96	1.56	16.6	6.74
Additive A	96	1.5	16	6.654
Additive B	92	1.7	15.5	6.477
нтрв	cure	0.907	3.09	3.916
CAB/BDNPAF	press	1.32	12.2	6.271

Shaped Charge Jet Impact Test Screening Tool

Reaction type is determined by evaluating damage to witness plates and the pipe

25mm SCJI Dent and Rate Results

2-in. Steel Dent depth = 0.32 in. (Steel Plate Hardness Rb = 83) Detonation Velocity 6.64 km/s Pour Viscosity = 0.16 kP

2-in. Steel Dent depth = 0.31 in. (Steel Plate Hardness Rb = 84) Detonation Velocity 7.00 km/s Pour Viscosity = 2.5 kP

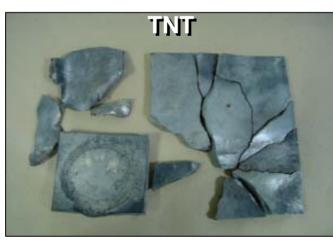
Additive A formulated to = TNT performance exhibits Type VI response to the 25mm SCJI

25mm SCJI Additional Dent and Rate Results

2-in. Steel Dent depth = 0.43 in. (Steel Plate Hardness Rb = 87) Detonation Velocity 7.56 km/s Pour Viscosity = 0.16 kP

2-in. Steel Dent depth = 0.39 in. (Steel Plate Hardness Rb = 104) Detonation Velocity 7.44 km/s Pour Viscosity = 0.64 kP

Modified PAX-35 with Additive B retains good performance, but exhibits a mild response to the 25mm SCJI

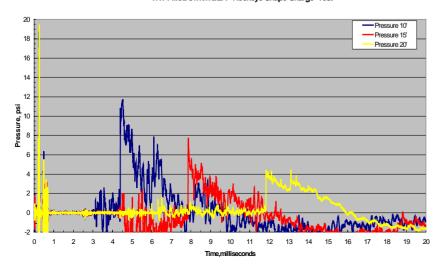


Combined 25mm SCJI Results

Dense reduced energy Additive B is very promising

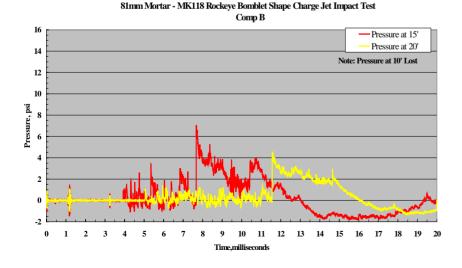
50mm SCJ Impact Test Default IM SCJ Threat Munition

- Witness plates
 - ½ in. thick 1ft x 10 in.
 mild steel witness plate
 - ¼ in. thick 2 ft x 2 ft aluminum witness plate
- 81mm mortar cartridge
 - Nose down
 - Fuse well sealed with AI cap
 - Body is very brittle (HF-1)
- MK118 rockeye bomblet (50mm SC)
 - □ 174 gms comp B
 - □ 5 gm CH-6 booster


Note: Pressure gauges differentiate shaped charge input from main charge response

TNT 50mm SCJI Test

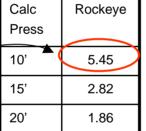
- Partial: full detonation (Type II-I)
 - Multiple small fragments
 - Al witness plate (top photo) shows damage from fragments
 - Steel witness plate (bottom photo) was damaged
 - High overpressures
 - Peak at 10 ft: 11.90 psi
 - Peak at 15 ft: 7.44 psi
 - Peak at 20 ft: 4.01 psi
 TNT Filled 81mm BLA- Rockeye Shape Charge Test

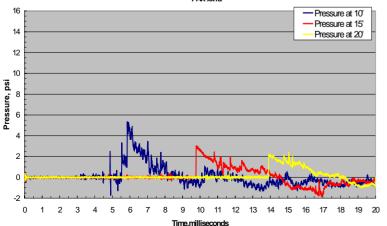


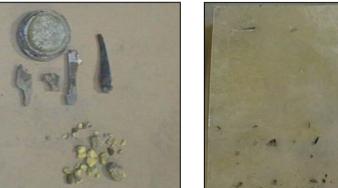
Composition B 50mm SCJI Test

- Full detonation (Type I)
 - Multiple small fragments
 - Al witness plate (top photo) shows damage from fragments
 - Steel witness plate
 - o (bottom) was shattered
 - High overpressures
 - Peak at 10 ft: lost gauge
 - Peak at 15 ft: 7.06 psi
 - Peak at 20 ft: 4.48 psi

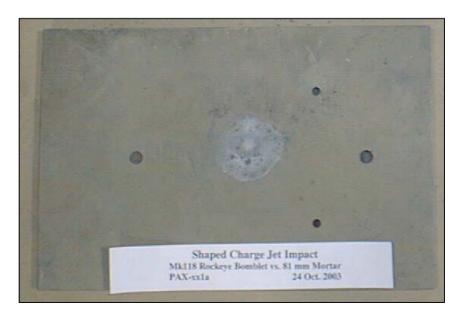
Calc Press	Rockey e	Rockeye + Comp B
10'	5.45	17.66
15'	2.82	7.74
20'	1.86	4.62






PAX-35 50mm SCJI Test

- Deflagration: no reaction (Type IV-VI)
- Multiple large fragments.
 - Al witness plate (top right); little damage and explosive residue
 - Steel witness plate (top left) intact
 - Explosive residue and fragments from area (left photo)
- Low overpressures
 - Peak at 10 ft: 5.38 psi
 - Peak at 15 ft: 3.05 psi
 - Peak at 20 ft: 2.43 psi



81mm Mortar - MK118 Rockeye Bomblet Shape Charge Jet Impact Test PAX-xx1a

Other IM Threats

PAX-35 Response to the Army Fragment Threat

M821A2 E1 Loaded Mortar Body

Conclusion

- An IM melt pour explosive has been successfully modified and tested against a major shaped charge threat in a munition without "conditioning" barriers
- A basic understanding of SCJI suppression mechanism has been developed
- Optimization activities will shortly enable practical, <u>fully</u> compliant IM munitions: munitions resistant to <u>all</u> IM threats

- It is feasible to pass SCJI attack at Composition B performance levels
 - Dense, reduced energy additives desensitize without compromising performance
- 25mm SCJ is an inexpensive screening tool to assess IM impact

The time has come to stop this threat!

Combined 25mm SCJI Results

RPGs will be stopped