Mitigating Shaped Charge Jet Impact

John Niles, Steven Nicolich and Bruce Williamson
US Army Research, Development and Engineering Command
Armaments, Research, Development and Engineering Center
Picatinny Arsenal, New Jersey 07806-5000
and
Dr. Daniel Doll, Nikki Rasmussen, Steve Bradley and Les Bracken
ATK Thiokol
Corrine, Utah 84307

15 November 2004
Perspective

Two of the Top Threats to US Forces in Current Operations

- Improvised Explosive Devices (IEDs)
 - Car bombs
 - Roadside mines, etc.
- Rocket Propelled Grenades (RPGs)
 - PG-7 series, 85mm warheads
 - RPG-7 system

<table>
<thead>
<tr>
<th>RPG Series</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG-7M</td>
<td>0.68 lb</td>
</tr>
<tr>
<td>PG-7G</td>
<td>0.85 lb</td>
</tr>
<tr>
<td>(most common)</td>
<td></td>
</tr>
<tr>
<td>PG-7L</td>
<td>1.50 lb</td>
</tr>
<tr>
<td>(newest production)</td>
<td></td>
</tr>
</tbody>
</table>
Importance of Defeating SCJ

- Most Armored Fighting Vehicles (AFVs) are light and highly susceptible to RPGs
 - Typical armor is aluminum (except tanks)
 - Reactive armor is heavy and can be neutralized using various tactics
 - Successful attacks are highly dependent upon what is hit
 - Hitting stowed munitions usually results in loss of platform and personnel
 - Logistic vehicles are even more vulnerable
- SCJI-resistant explosives
 - Catastrophic damage from stowed/transported ammo is avoided
 - Suppression of violent reaction significantly improves probability of survival for personnel and platform
 - Sympathetic detonation will also be suppressed (no detonation, no SD)
 - SD barriers can be eliminated, reducing weight and allowing more design options
 - Other IM threats will also be mitigated
 - Attacked logistic vehicles loads may be salvageable
- US AFV design constraints limit other options such as barriers or additional armor
 - C-130 volume and weight envelope: 18 ½ ton maximum
IM Threat Summary

- Thermal Threats (FCO/SCO)
 - Sympathetic Reaction
 - Bullet and Fragment Impact

- Shaped Charge Jet Impact

- Threat characteristics understood
- Mitigation solutions are available
 - Energetics
 - Barriers
 - System design

- Threat characteristics understood
- Mitigation solutions not available
 - Barriers not feasible except in main battle tanks
 - Mitigation design features exist for small items only (Spider, etc)
 - IM SCJI test normally assessed to fail (detonation), or, assessed as not a threat!
 - An energetic solution is the only solution and is practical for many applications
Shaped Charge Warheads

Shaped Charge warheads; used in many weapon systems

<table>
<thead>
<tr>
<th>Threat Munition</th>
<th>Warhead Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artillery Submunitions</td>
<td>20-40mm</td>
</tr>
<tr>
<td>Surface to Surface Missile Sub-munitions</td>
<td>50mm</td>
</tr>
<tr>
<td>Shoulder Launched Viper</td>
<td>65mm</td>
</tr>
<tr>
<td>Shoulder Launched PG-7 series</td>
<td>85mm</td>
</tr>
<tr>
<td>Anti-Tank Guided Munition</td>
<td>115mm & up</td>
</tr>
</tbody>
</table>

- SCs are used extensively in every conflict
- SCJ will remain a major threat for the foreseeable future
 - Larger SCs can be mitigated through tactics (law of diminishing returns)
 - RPGs and smaller SCJs can be mitigated through energetics solutions
- The effort to address this threat is long overdue
Mitigating SJCI

- A rapid response effort is underway to provide munition resistance to shaped charge jet impact using a variant of PAX-21 melt pour explosive
 - Dense, less energetic additives have been found to suppress the violence of response without compromise of fragmentation performance
 - Specific suppressive mechanism(s) have been identified
- 81mm, M821A2E1 HE loaded cartridge (mortar) body used as target munition.
- Explosive candidate has been labeled PAX-35: formulated as a Composition B replacement
- Type 4 reactions have been obtained against 50mm (Rockeye) threat munition

- Efforts continue to improve resistance: threat focus is the PG-7 series 85mm RPG
 - Smaller SCs will be easily mitigated by this effort
 - Tests are being conducted directly against munition with standoff
 - No conditioning barrier to simulate worst case: attacks on logistics trains (supply trucks, no armor)
 - Follow-on studies will be conducted with armor to assess AFV survivability
 - Additives may work in pressed explosives as well as melt pours
 - Lethality trade-offs may have to be examined for higher performance munitions (no free lunch, just blue plate special)
Program Approach

- Capitalize on initial additive discovery
 - Identify similar materials
 - Examine additives for optimum characteristics
 - Castability
 - Cost
 - Producibility
 - Formulation optimization
 - IM threat response
- Develop inexpensive and simple screening tool(s)
- Perform subscale tests: lethality, IM characteristics, etc.
- Concentrate on direct munition attack: follow-on w/behind armor effects
- Downselect best candidate(s) for...
 - Castable formulations
 - Pressed formulations
- Optimize formulations (starting with PAX-35)
- Transition to appropriate munitions IM programs
Optimizing PAX-35

- Additive A increases formulation viscosity due to bonding among selected desired molecules
- Initial PAX-35 formulation with Additive A was castable, but not very pourable
 - Additive A has potential as a pressable explosive binder material
 - Additive A has been replaced with an improved pourable material (Additive B) that minimizes intermolecular bonding characteristics, but still retains dense, desensitizing chemical moieties
- A number of additives with very improved pouring characteristics have been identified and are undergoing down selection for fragmentation munitions
Desensitizers: Dense and Reduced Energy

Comparison With Typical Binders: IM Without Performance Compromise

- The reduced energy additives maintain high C-J pressures and velocities because they contain specific, dense chemical moieties.
- Less energetic binders usually require high amounts of nitramines to maintain performance: may be problematic for SCJ resistance.
- Higher performance explosives require trade-offs between SCJ resistance and lethality.

<table>
<thead>
<tr>
<th>Biner</th>
<th>MP (°C)</th>
<th>Density (g/cc)</th>
<th>C-J pressure (GPa)</th>
<th>C-J Velocity (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-dinitroanisole</td>
<td>96</td>
<td>1.56</td>
<td>16.6</td>
<td>6.74</td>
</tr>
<tr>
<td>Additive A</td>
<td>96</td>
<td>1.5</td>
<td>16</td>
<td>6.654</td>
</tr>
<tr>
<td>Additive B</td>
<td>92</td>
<td>1.7</td>
<td>15.5</td>
<td>6.477</td>
</tr>
<tr>
<td>HTPB cure</td>
<td></td>
<td>0.907</td>
<td>3.09</td>
<td>3.916</td>
</tr>
<tr>
<td>CAB/BDNPAF press</td>
<td></td>
<td>1.32</td>
<td>12.2</td>
<td>6.271</td>
</tr>
</tbody>
</table>
Shaped Charge Jet Impact Test Screening Tool

Reaction type is determined by evaluating damage to witness plates and the pipe
25mm SCJI
Dent and Rate Results

2-in. Steel Dent depth = 0.32 in.
(Steel Plate Hardness Rb = 83)
Detonation Velocity 6.64 km/s
Pour Viscosity = 0.16 kP

2-in. Steel Dent depth = 0.31 in.
(Steel Plate Hardness Rb = 84)
Detonation Velocity 7.00 km/s
Pour Viscosity = 2.5 kP

Additive A formulated to = TNT performance exhibits
Type VI response to the 25mm SCJI
25mm SCJI
Additional Dent and Rate Results

Comp B
- 2-in. Steel Dent depth = 0.43 in.
 (Steel Plate Hardness Rb = 87)
 Detonation Velocity 7.56 km/s
 Pour Viscosity = 0.16 kP

PAX-35 Mod
- 2-in. Steel Dent depth = 0.39 in.
 (Steel Plate Hardness Rb = 104)
 Detonation Velocity 7.44 km/s
 Pour Viscosity = 0.64 kP

Modified PAX-35 with Additive B retains good performance, but exhibits a mild response to the 25mm SCJI
Combined 25mm SCJI Results

Dense reduced energy Additive B is very promising
50mm SCJ Impact Test
Default IM SCJ Threat Munition

- Pressure Gauges at 10 ft, 15 ft, 20 ft
- Witness plates
 - ½ in. thick 1ft x 10 in. mild steel witness plate
 - ¼ in. thick 2 ft x 2 ft aluminum witness plate
- 81mm mortar cartridge
 - Nose down
 - Fuse well sealed with Al cap
 - Body is very brittle (HF-1)
- MK118 rockeye bomblet (50mm SC)
 - 174 gms comp B
 - 5 gm CH-6 booster

Note: Pressure gauges differentiate shaped charge input from main charge response
TNT 50mm SCJI Test

- Partial: full detonation (Type II-I)
 - Multiple small fragments
 - Al witness plate (top photo) shows damage from fragments
 - Steel witness plate (bottom photo) was damaged
 - High overpressures
 - Peak at 10 ft: 11.90 psi
 - Peak at 15 ft: 7.44 psi
 - Peak at 20 ft: 4.01 psi

![Graph showing pressure over time](image-url)
Composition B 50mm SCJI Test

- Full detonation (Type I)
 - Multiple small fragments
 - Al witness plate (top photo) shows damage from fragments
 - Steel witness plate (bottom) was shattered
 - High overpressures
 - Peak at 10 ft: lost gauge
 - Peak at 15 ft: 7.06 psi
 - Peak at 20 ft: 4.48 psi

<table>
<thead>
<tr>
<th>Calc Press</th>
<th>Rockeye</th>
<th>Rockeye + Comp B</th>
</tr>
</thead>
<tbody>
<tr>
<td>10’</td>
<td>5.45</td>
<td>17.66</td>
</tr>
<tr>
<td>15’</td>
<td>2.82</td>
<td>7.74</td>
</tr>
<tr>
<td>20’</td>
<td>1.86</td>
<td>4.62</td>
</tr>
</tbody>
</table>

81mm Mortar - MK118 Rockeye Bomblet Shape Charge Jet Impact Test
Comp B

Note: Pressure at 10' Lost
PAX-35 50mm SCJI Test

- Deflagration: no reaction (Type IV-VI)
- Multiple large fragments.
 - Al witness plate (top right); little damage and explosive residue
 - Steel witness plate (top left) intact
 - Explosive residue and fragments from area (left photo)
- Low overpressures
 - Peak at 10 ft: 5.38 psi
 - Peak at 15 ft: 3.05 psi
 - Peak at 20 ft: 2.43 psi

<table>
<thead>
<tr>
<th></th>
<th>Calc Press</th>
<th>Rockeye Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>10'</td>
<td>5.45</td>
<td>5.45</td>
</tr>
<tr>
<td>15'</td>
<td>2.82</td>
<td>2.82</td>
</tr>
<tr>
<td>20'</td>
<td>1.86</td>
<td>1.86</td>
</tr>
</tbody>
</table>

![Graph showing pressure over time for Rockeye and 81mm Mortar - MK118 Rockeye Bomblet Shape Charge Jet Impact Test](image)
Other IM Threats

PAX-35 Response to the Army Fragment Threat

M821A2 E1 Loaded Mortar Body

No Reaction
Conclusion

- An IM melt pour explosive has been successfully modified and tested against a major shaped charge threat in a munition without “conditioning” barriers
- A basic understanding of SCJI suppression mechanism has been developed
- Optimization activities will shortly enable practical, fully compliant IM munitions: munitions resistant to all IM threats
- It is feasible to pass SCJI attack at Composition B performance levels
 - Dense, reduced energy additives desensitize without compromising performance
- 25mm SCJ is an inexpensive screening tool to assess IM impact threats

The time has come to stop this threat!
Combined 25mm SCJI Results

PBXN-110

Comp B

TNT

PAX-35 Mod

RPGs will be stopped