

Sensitivity and Structural Investigations on Shock Loaded and Quasi-Static Loaded KS22a HE

Dr. Helmut Muthig ^(*) Dr. Werner Arnold

TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Schrobenhausen, GERMANY

"Material & Techniques for Reducing Sensitivity"

2004 Insensitive Munitions & Energetic Materials Technology Symposium Hilton - San Francisco, San Francisco, CA, USA November 15 - 17, 2004

TDW ... when the payload counts ®

European Aeronautis, Defense and Space Company

TDW - Gesellschaft für verteidigungstechnische Wirksysteme mbH

is the acknowledged **"Center of Excellence"** for Lethal Packages / Warheads within EADS

Page 2 2004 IM & EM Technology Symposium

Sensitivity and Structural Investigations on Shock Loaded and Quasi-Static Loaded KS22a

Outline:

- 1. Motivation Shock Loading of KS22a
- 2. TDW Gap Test Sensitivity Test
- 3. Shock Loading Mechanisms Static / Dynamic Loading of KS22a
- 4. Experimental Results Properties of Shock Loaded KS22a
- 5. Conclusion Summary

1. Motivation: Shock Loading of KS22a

Why Shock Loading of KS22a?

KS22a is a cost-effective, powerful but insensitive High Explosive for penetrator applications

- It is RDX-based (67 % RDX)
- It is of the PBX-Type (15 % Plastic Binder)
- It is blast enhanced for improved performance in confined spaces (18 % Al)
 - It withstands high shock loads without degradation of performance
 - <u>Question</u>: Will it withstand high shock loads without degradation of *insensitivity* as well?

German S/O Missile Taurus KEPD 350 MEPHISTO Penetrator w/ KS22a

Future Application with higher Shock Loads *Peak Pressure in Explosive Filler (Nose)*

Simulation of Concrete Perforation (2 m, 35 MPa)

Question:

Will shock loads of several kbars influence the sensitivity of KS22a?

Nov 15 - 17, 2004 San Francisco, CA

2004 IM & EM Technology Symposium

Balance between Performance vs. Sensitivity Shock Loading of HE: Change in Sensitivity?

2. TDW Gap Test: Sensitivity Test

TDW Gap Test: Comparison between Run Distance to Detonation and Plate Dent Depth

Page 10 2004 IM & EM Technology Symposium

3. Shock Loading Mechanisms

- Quasi-Static Loading: 200 ton Press
- Dynamic Loading: Cannon Firing (IMEMTS 2003)
- Dynamic Loading: Novel Shock Wave Apparatus

3. Shock Loading Mechanisms

• Quasi-Static Loading: 200 ton Press

- Dynamic Loading: Cannon Firing (IMEMTS 2003)
- Dynamic Loading: Novel Shock Wave Apparatus

Quasi-Static Loading TDW's 200 ton Press

Downstroke Ram

Static shock loading with 1 kbar and 4 kbar (axial loads)

> Pressing Confinement 58 mm

200 ton Static Press Lower Ram

Page 13 2004 IM & EM Technology Symposium

3. Shock Loading Mechanisms

• Quasi-Static Loading: 200 ton Press

• Dynamic Loading: Cannon Firing (IMEMTS 2003)

• Dynamic Loading: Novel Shock Wave Apparatus

Dynamic Loading Cannon Firing: Lateral Impact on Concrete Target

Page 15 2004 IM & EM Technology Symposium

Pre-Shocked KS22a IHE Recovered after Test

3. Shock Loading Mechanisms

- Quasi-Static Loading: 200 ton Press
- Dynamic Loading:
- Dynamic Loading:

- Cannon Firing (IMEMTS 2003)
- **Novel Shock Wave Apparatus**

Novel Shock Wave Apparatus: Three Sizes

EADS

Calibration: Peak Pressure vs Gap Thickness

Page 19

2004 IM & EM Technology Symposium

Shock Wave Apparatus: Test with IHE KS22a Medium Size Variant

HWC Booster KS32 Donor Charge

Steel Gap: Thickness x = 100 mm

Casing of Specimen

Steel Support

Shock Wave Apparatus: Parts after Test Medium Size Variant

Shock Wave Apparatus after Test

KS22a Specimen

Page 21 2004 IM & EM Technology Symposium

Mechanical Limit of Shock Wave Loading KS22a Specimen after 7.5 kbar shock wave loading

Pre-Shocked KS22a Specimens

Mechanical Limit: ~ 7 kbar; Detonation: 12 kbar; (Bare: ~ 48 kbar)

Test No.	D-64788	D-64791	D-64790	D-64789
Gap thickness 凶	100 mm	90 mm	80 mm	50 mm
Shock load 7	5.8 kbar	6.3 kbar	7.5 kbar	12 kbar
Sample property	intact	intact	cracks	detonated !
Gap Test suitab.	possible	possible	not possible	1

Gap Test with Pre-Shocked KS22a Specimen Experimental Set up

Front View

Page 24

2004 IM & EM Technology Symposium

Side View

Test Result: KS22a Residual Parts after Gap Test Mechanical Destruction due to Shock Damage

D-64771 5.8 kbar

D-64770 6.3 kbar

Reasons for Mechanical Destruction (No Detonation)

- Cracks, De-Bonding ... (reduced integrity) of specimen
- Starting of local reactions blew specimen apart
- No radial support in Bare Gap Test ...
- ... but *Detonation* within a penetrator casing to be expected

4. Experimental Results

Page 29

2004 IM & EM Technology Symposium

Page 30

2004 IM & EM Technology Symposium

Page 31

2004 IM & EM Technology Symposium

Relevance of these Test Results for Real World Penetrator Applications

Page 32

2004 IM & EM Technology Symposium

Investigations on the Structure of KS22a

Structural Investigations by

- X-Ray Refraction
- X-Ray Diffraction
- Thermal Conductivity

Scanning Electron Microscopy (SEM)

have been carried out by **WIWEB**

Results: Possible Reasons for Changes of Sensitivity due to Static / Dynamic Loading

- Cracking of Grains
- Mechanical De-Bonding of Matrix / Grain Interfaces
- Local Reactions of RDX Grains

Comparable Investigations by

A. Lefrancois et al. CEG (F): De-Bonding, Local Melting & Reaction Dynamic Loading: RDX based HE, ~ 4 kbar, Scaled Penetrator

P. Peterson et al. LANL (USA): Cracking of HMX Crystals Quasi-Static Loading: HMX based HE, 0.5 - 2 kbar, Press

have shown comparable results.

Page 34 2004 IM & EM Technology Symposium

5. Conclusion

Observations and Conclusions

- Shock loading of HE in Supersonic Penetrators is an issue !
- Significant reduction of initiation thresholds due to radial confinement ($48 \rightarrow 12$ kbar) observed
- Changes in sensitivity by quasi-static & dynamic shock loadings (Run Distance Tests) occured
- This does not mean that KS22a is not suited for Supersonic Penetrators to be an IM !
- Indications for defects like de-bonding and grain fracture are likely the reasons for sensitivity changes

EADS / TDW

A MEMBER OF

Thank you for your patience!

Any Questions?

Page 38 2004 IM & EM Technology Symposium