The Influence of Molecular Weight on Explosive Hazard

Kason Bala and Peter Golding

Energetic Polyphosphazenes – a new category of binders for energetic formulations Peter Golding and Stephen J Trussell

Bomb calorimetric study of a series of energetic linear polyphosphazenes Anthony J. Bellamy, Alessandro E. Contini, Peter Golding and Stephen J. Trussell

PERFORMANCE VERSUS HAZARD

IM Requirements:

High Performance/Low Hazard Inverse Relationship Typical

Mitigation Techniques:

Micronisation Coating (PBXs) Dilution (Energy Loss)

Key Influences on Hazard:

Chemical Stoichiometry (Oxygen Balance) Chemical Structure Physical Morphology

COMPARATIVE HAZARD DATA

Name	Structure	Impact Sensitivity (N m)	EMTAP Test No 8 (cm)	O.B. (%)
Glycidyl nitrate	O ONO ₂	2	4.1	-60.5
DEGDN		1.5	11.8	-40.8
PolyGLYN	$HO \left(\begin{array}{c} O \\ D \\ O \\$		>126	-60.5
Diglycerol tetranitrate	O ₂ NO ONO ₂ O ₂ NO O ONO ₂	1.5	18.7	-18.5

HYPOTHETICAL RELATIONSHIP BETWEEN SENSITIVENESS AND MOLECULAR MASS

Sensitiveness

Increasing Molecular Mass ----

GLYN OLIGOMERS

Product Distribution Oligomer size, n	HPLC Ratio (%)	Average Molecular Weight (M _W)	
2	100	346	
2:3	83:17	372	
2:3:4	81:14:5	385	
2:3:4:5	42:33:19:6	479	
2:3:4:5:6:7	12:36:24:16:8:4	607	
polyGLYN	-	~2000	

SMALL-SCALE HAZARD TEST DATA

Product Distribution Oligomer size, n	M _w	Mallet Impact (Steel/Steel) (%)	Hot Plate (300°C)	EMTAP Test No 8, Median Height (cm)
Glycidyl nitrate	119	Volatile	Volatile	4.1
2	346	50	Flame	18.7
2:3	372	50	Flame	
2: 3:4	385	50	Flame	
2:3:4:5	479	50	Flame	
2:3:4:5:6:7	607	0	Charring	
polyGLYN	~2000	0	Charring	Out of range

SMALL-SCALE HAZARD DATA

HAZARD DIFFERENCES BETWEEN SMALL MOLECULES AND POLYMERS - POSSIBLE CAUSES

Volatility Ease of generation of small fragments Number of degrees of freedom

Energetic Polyphosphazenes – a new category of binders for energetic formulations

Peter Golding and Stephen J Trussell

PLASTIC BONDED EXPLOSIVES (PBXs) Crystalline Filler + Polymeric Binder + Additives Filler Provides Energy Binder Provides Shape/Robustness

& Desensitises Most Explosives

Energetic Binder

filler (80%) filler binder (20%)

POLYPHOSPHAZENES

ADVANTAGES

Can be dense Can have low T_gs Potential synthetic flexibility Chemical and thermal stability

NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES SYNTHESISED AT AWE

AZIDE FUNCTIONALISED POLYPHOSPHAZENES SYNTHESISED AT AWE

SYNTHESIS OF NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES

DECOMPOSITION ENERGIES OF NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES

% Energetic side-groups

DENSITY VALUES OF NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES

GLASS TRANSITION TEMPERATURES OF NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES

COMPARATIVE PHYSICAL DATA FOR NITRATE ESTER FUNCTIONALISED POLYMERS

Material	%	Density	T _g	Decomp.	Energy
	Energetic	(g/cm ³)	(°Č)	Energy	Density
\sim	side-			(DSC)	(J/cm ³)
	groups			(J/g)	[% higher
					than pGLYN]
C3 PPZ	72	1.65	-25	2020	3330 [14]
C4 PPZ	68	1.60	-13	2370	3790 [30]
C6 PPZ	77	1.52	-55	2430	3690 [26]
PolyGLYN		1.46	-30	2000	2920
PolyNIMMO	- / -	1.26	-33	1300	1640

HAZARD TEST DATA FOR C6 PPZ CONTAINING 70% NITRATE ESTER FUNCTIONALISED SIDE-GROUPS

HAZARD TEST	RESULTS/OBSERVATIONS		
Mallet impact (steel on steel)	0% fires		
Mallet friction (steel on steel)	0% fires		
Electric spark	No ignitions at 4.5J		
Flame	Burns quietly, requires high		
	temperatures to ignite.		
	Sintered char residue		
DSC	Large exotherm, onset at		
	186°C		

FORMULATION WITH POLYPHOSPHAZENES

Intended for pressable systems Very promising binder properties Preliminary experiments with: HNS, HMX, TATB & FOX-7 Miscible with polyGLYN

Lowers Tg of polyGLYN

INFLUENCE OF BINDER ON PERFORMANCE

Bomb calorimetric study of a series of energetic linear polyphosphazenes

Anthony J. Bellamy, Alessandro E. Contini, Peter Golding and Stephen J. Trussell

NITRATE ESTER FUNCTIONALISED POLYPHOSPHAZENES USED FOR BOMB CALORIMETRY EXPERIMENTS

MEASURED VALUES OF INTERNAL ENERGY OF COMBUSTION (ΔU_c)

Energetic Polymer	% Energetic Side	ΔU _c (J g ⁻¹)
	Group Substitution	
C2-Mononitrato PPZ	76	-10520 ± 1.7%
	31	-8880 ± 1.6%
C3-Dinitrato PPZ	65	-8640 ± 1.2%
	70	-9220 ± 1.7%
C4-Dinitrato PPZ	59	-10890 ± 1.5%
	61	-11250 ± 0.9%
C6-Dinitrato PPZ	50	-13910 ± 3.7%
	51	-14450 ± 1.2%

PRODUCTS OF COMBUSTION CHEMISTRY

Internal Combustion Energy

Ideal Products:

 $C_{5.4} H_{8.2} O_{10.4} N_{5.2} F_{1.8} P_{1.0} + O_2 = CO_2 + H_2O + N_2 + HF + H_3PO_4$

In reality:

+ other products e.g. HNO₃ (so corrections applied)

What happens to F and P?

Some options: CF₄, Fluorophosphoric acids, Polyphosphoric acid species

TYPICAL ¹⁹F NMR SPECTRUM OF UNDILUTED, BUFFERED BOMB SOLUTION

TYPICAL ION CHROMATOGRAM OF DILUTED, BUFFERED BOMB SOLUTION

POLYPHOSPHAZENES: TRUE PRODUCTS OF COMBUSTION

Standard Products:-

CO₂, H₂O, N₂, HF, H₃PO₄

Non-Standard Products:-

 HNO_3 , H_2PO_3F , HPO_2F_2 , HPF_6 (sometimes)

No Evidence For:-

Polyphosphoric acids, their fluorinated analogues or CF₄

Hence: stoichiometric combustion equation constructed

STANDARD ENTHALPY OF COMBUSTION (ΔH°_{c}) AND STANDARD ENTHALPY OF FORMATION (ΔH°_{f})

Energetic	% ES*	ΔH° _c	ΔH° _c	ΔH ^o f	ΔH° _f
Polymer		(Jg⁻¹)	(KJ mol⁻¹)	(Jg⁻¹)	(KJ mol⁻¹)
C2-Mononitrato	76	-10520 ± 180	-2670 ± 46	-5719 ± 180	-1451 ± 46
PPZ					
	31	-8880 ± 140	-2612 ± 41	-6974 ± 140	-2052 ± 41
C3-Dinitrato	65	-	-	-	-
PPZ	70	-9190 ± 160	-3290 ± 57	-4496 ± 160	-1609 ± 57
C4-Dinitrato	59	-	-	-	-
PPZ	61	-11250 ± 100	-4043 ± 36	-4512 ± 100	-1621 ± 36
C6-Dinitrato	50	-	-	-	-
PPZ	51	-14460 ± 180	-5338 ± 66	-4106 ± 180	-1516 ± 66

* ES = Energetic side-group substitution

MEASURED INTERNAL ENERGY OF COMBUSTION VERSUS PERCENT ENERGETIC SIDE GROUPS

Job No/ 30

CONCLUSIONS (ALL 3 PAPERS)

Polymerisation may be a useful tool to reduce hazard

- in molecules and hence PBXs (solids loading)

Full utilisation needs enhanced energy-density polymers

 polyphosphazenes show promise

 Good progress achieved on combustion chemistry of energetic polyphosphazenes

Existing products are not optimised

Expect a series of new products with steadily improving properties