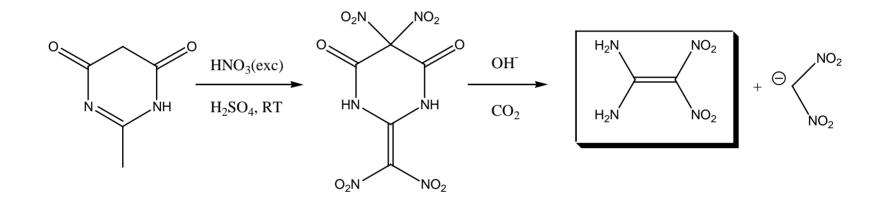


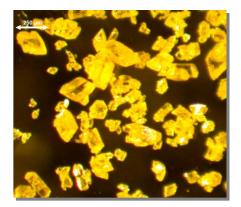
Formulation and Testing of a Comp B Replacement Based on FOX-7

Carina Eldsäter, Åke Pettersson and Marita Wanhatalo


Acknowledgement

Pierre Bengtsson Hans-Göran Ohlsson Alf Prytz and co-workers at Saab Bofors Dynamics AB, Sweden

EURENCO Bofors AB, Sweden Defence Material Administration, Sweden


Synthesis of FOX-7

A.A. Astrat'ev et al. Russ. Chem. J. Org. Chem. 37, 2001, 729 N. V. Latypov et al. Proc. IMEMTS 2001, Bordeaux.

Properties of FOX-7

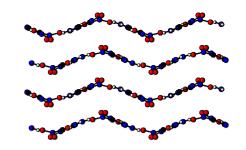
Density Oxygen balance Heat of formation

Detonation velocity

Detonation pressure

1.885 g/cm³ -21.6%

-32 kcal/mole


8870 m/s (calc) 8340 m/s (exp)* 34.0 GPa (calc) (RDX 1.816 g/cm³)
(RDX -21.6%)
(RDX 16 kcal/mole)

(RDX 8930 m/s) (calc)
*) 1.5% wax
(RDX 34.6 GPa) (calc)

H. Östmark et al. *Proc. ICT Int. Ann. Conf.,* Karlsruhe (2001) S. Karlsson et al. *Proc. Int. Det. Symp.,* San Diego (2002)

Sensitivity of FOX-7

Small-scale sensitivity

•	Impact sensitivity	13-25 J	(RDX 7.5 J)
•	Friction sensitivity	>340 N	(RDX 120 N)

Thermal sensitivity

- Ignition temperature (Wood's)
- Ignition temperature (FSD 0214)

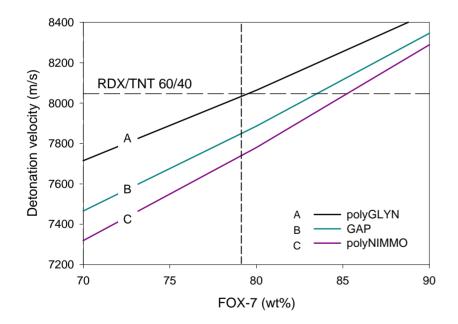
215°C 225-250°C

10 0F 1

(RDX 220°C)

Shock sensitivity

- small-scale gap test
- medium-scale gap test


- ~ TNT (pressed)
- ~ TNT (pressed)

H. Östmark et al. *Proc. 11th Int. Det. Symp.,* Snowmass (1998) C. Eldsäter et al. *Proc. EuroPyro*, Sain Malo (2003)

Aim

The aim of this work was to find a replacement for Comp B but with improved sensitivity.

Requirements

- Low-sensitive energetic material (e.g. FOX-7)
- Energetic binder with high density (e.g. polyGLYN)

FOF-2

FOX7 (255-350µm)	50 %
FOX7 (< 70µm)	20 %
Energetic binder	30 %
PolyGlyN	21 %
ButyI-NENA	5 %
 H₁₂MDI (Desmodur-W) 	4 %

• DBTDL

Very high viscosity!

25 mm Detonation Test - Results

NaCl

Comp B

FOF-2

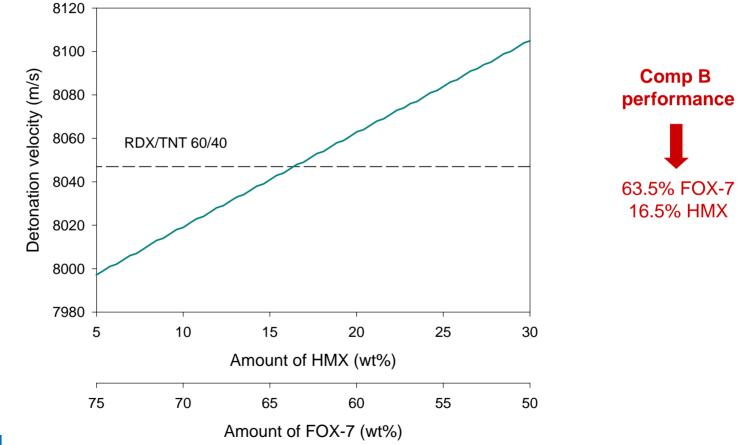
Small-Scale Slow Cook-Off

Comp B

FOF-2

T_{cook-off} 207°C (Type I reaction)

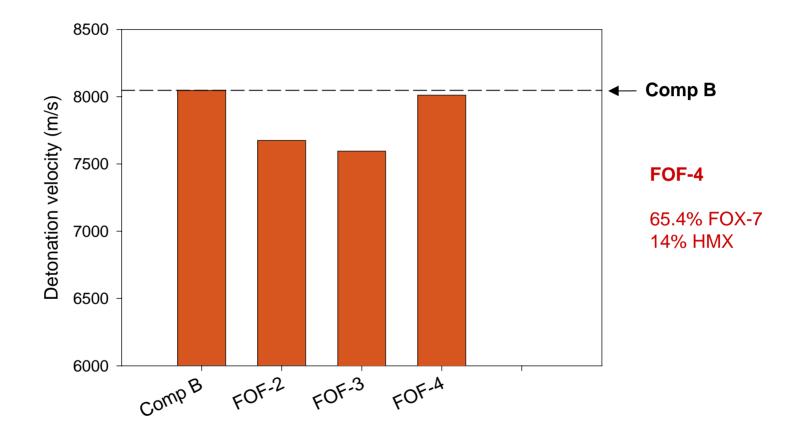
T_{cook-off} 220°C (Type V reaction)


FOF-3 2002FOX7 (350-800µm) 35 % FOX7 (< 70µm) 35 % **Energetic binder** 30 % PolyGlyN 11 % • GAP 11 % Butyl-NENA 5 % • H₁₂MDI (Desmodur-W) 3%

• DBTDL

New binder - lower viscosity but lower performance!

Improved Performance with HMX


2003
65.4 %
14.0 %
20.6 %
7.4 %
7.4 %
3.7 %
2.1 %

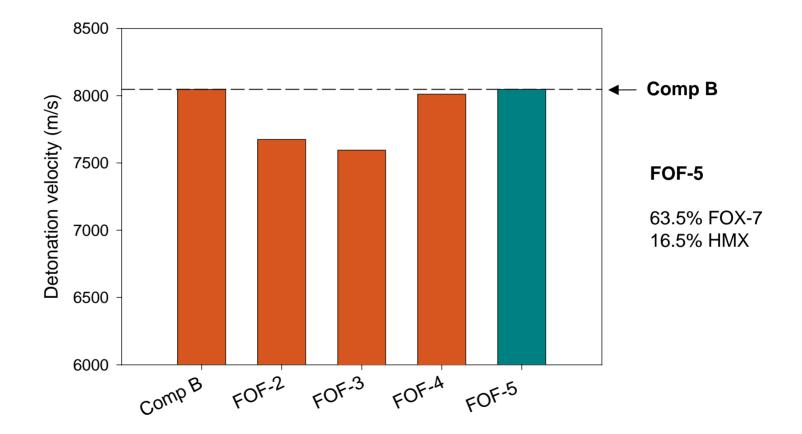
• DBTDL

Improved performance but high viscosity due to broad particle size distribution!

Theoretical performance

25 mm Detonation Test - Results

NaCl


FOF-5

FOX7 (238µm)	38.1 %
FOX7 (32µm)	25.4 %
HMX (22 μm)	16.5 %
Energetic binder	20 %
 PolyGlyN 	7.2 %
• GAP	7.2 %
 ButyI-NENA 	3.6 %
 H₁₂MDI (Desmodur-W) 	2 %
• DBTDL	

2003

Theoretical Performance

Initial "IM Testing" of FOF-5

40 mm artillery shells

- Slow cook-off (MIL-STD-2105B)
- Fast cook-off (MIL-STD-2105B)
- Bullet impact (MIL-STD-2105B)

- HNS II-based fuze
- Cartridge filled with rice to simulate propellant grains

Fast Cook-Off

Blast pressure (max 160 Pa) and no significant heat radiation ⇒ Type IV response (fire) Debris (fuze) recovered at > 24 meters from test stand

⇒Type IV response (deflagration)

Composition B ⇒ Type I response (detonation)

Slow Cook-Off

First test (inert fuze) Second test (HNS II-based fuze) *Composition B*

⇒ Type V response (fire)
⇒ Type IV response (deflagration)
⇒ Type I response (detonation)

Slow Cook-Off

Before test

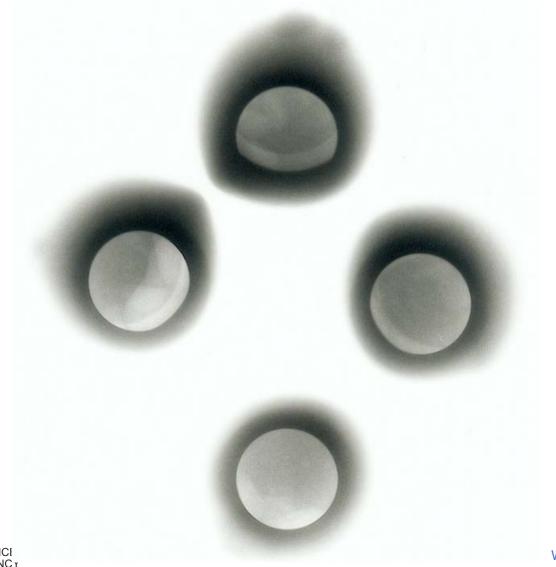
After first test

After second test

Bullet Impact

Debris (fuze) recovered less than 15 meters from test stand ⇒ Type V response (fire)

Composition B ⇒ Type I response (detonation)


Initial "IM Testing" - summary

FOF-5 show much lower response to SCO, FCO and BI than Comp B.

	Slow Cook-Off	Fast Cook-Off	Bullet Impact
FOF-5	Fire (test 1) Fire/Defl (test 2)	Deflagration	Fire
Comp B	Detonation	Detonation	Detonation

Voids

Conclusions

- FOF-5 show much lower response to SCO, FCO and BI than Comp B.
- A better cast explosive charge with higher density and thus fewer voids will most likely improve the responses to fast and slow heating.
- Preliminary results show that the solid loading of FOF-5 can be increased even further without compromising viscosity.

