

Insensitive Munition and Warheads Performance Testing of PAX-3

Ms. Wendy Balas, Mr. Steven Nicolich, Mr. Arthur Daniels

US Army RDECOM-ARDEC Picatinny, NJ 07806-5000

2004 Insensitive Munitions and Energetic Materials Technology Symposium San Francisco, California 15-17 November 2004

- Background
- Candidate Explosives
- Testing for Down-Selection
- Calculations
- IM Testing
- Conclusions

Background

Objective: To Design a Warhead To Defeat both Armor and Structure Targets.

CURRENT SOLUTION 1 ARMOR WEAPON 1 BUNKER WEAPON

- •High Explosive
 - -Accelerate and move metal
 - High pressure applied quicklyPressure pulse fades rapidly
- High *Blast* Explosive
 - Damage caused by overpressure
 - Less initial pressure pulse
 - Increased length of pressure pulse and pmpulse

N <u>ONGOING WORK</u> 1 WEAPON FOR ARMOR, & BUNKER TARGETS

Candidate Explosives

- •Hexal 70/30: RDX based, pressed
- •HTA-3: HMX based, castable
- •Aluminized Comp-A3: RDX based, pressed
- •PAX-3: HMX based, pressed
- •LX-14: Baseline

Warhead Testing for Explosive Downselect (146mm Warhead)

- •Long Stand-Off Testing for Jet Characterization
 - -PAX-3 produced straightest jets
 - -PAX-3 had highest tip velocity
- •Short Stand-Off for Penetration Performance
 - -PAX-3 had excellent penetration results
 - •Pax-3 demonstrated 78% of LX-14 performance
 - •Twice that of other high blast explosives
- •Blast Effect Against Concrete Walls
 - -Larger through-hole than LX-14 baseline
 - -PAX-3 created largest rear spall damage

PAX-3 146-mm Blast Effect

Bunker Defeat Test 81-mm

6" x 6" side timbers 4" x 4" top timbers

3' thick sand wall with interlocking sand bags

81-mm Warhead

Bunker Defeat Test 81-mm

PAX-3 Successfully Defeats Bunker!

Modeling & Simulation

- PAX-3 was downselected for further evaluation after successful 146-mm and static 81-mm bunker testing
- CALE Modeling and Simulation
 - Performed on 81-mm and 72-mm warhead designs
 - Optimized jet performance and characterization
- 81-mm and 72-mm loaded with PAX-3
 - Analyze and compare actual data with models for penetration performance and jet characterization.

CHEETAH Calculations of PAX-3

COMPOSITION: PAX-3 Variations 6.5% CAB, 9.5% BDNPA/F 84% (HMX + Aluminum)	Density 99% TMD (g/cc)	CJ Pressure GPa	Detonation Velocity (km/s)	Expansion Energy @V/V0=6.5 E _{6.5} (kJ/cc)	Total Mechanical Energy E _{tot} (kJ/cc)
0% Al	1.760	29.7	8.34	7.74	9.39
10% Al	1.810	28.3	7.99	8.52	11.13
15% Al	1.835	27.4	7.73	8.83	12.01
18% Al	1.851	27.1	7.65	8.94	12.58
19% Al	1.857	26.9	7.64	8.95	12.78
20% Al (PAX-3)	1.862	26.6	7.63	8.94	12.98
25% Al	1.890	24.8	7.58	8.73	13.86
28% Al	1.906	23.5	7.51	8.47	14.10
30% Al	1.918	22.6	7.47	8.17	14.01

20% Aluminum Gives Good Balance

Test	PAX-2A	PAX-3	
ABL Impact	6-9-11 cm	PAX-3 209-00-082-094,104 15X	
ABL Friction	800@ 8ft/sec	800@ 8ft/sec	
Unconfined ESD	> 8 J	> 8 J	
SBAT	365°F	360°F	
NOL card gap	137 - 123	124	

Small Scale Sensitivity Data indicates NO Safe Handling Issues!

A series of IM tests were conducted on PAX-3 in a 81-mm Generic Shape Charge. IM tests chosen for evaluation were bullet impact (BI), fragment impact (FI), fast cook-off (FCO), and slow cook-off (SCO).

Bullet Impact

Bullet Impact

Un-reacted PAX-3

Virtually All PAX-3 Explosive Recovered PASSED!

Fragment Impact Set-Up

Fragment Impact

Un-reacted PAX-3

Virtually all Unexploded Ordnance Recovered PASSED!

Fast Cook-Off Set-Up

Fast Cook-Off

Type V Reaction – Burn PASSED!

Slow Cook-Off Set-Up

Type III and Type IV Reaction – Explosion/Deflagration Case Venting Can Fix This Reaction

- Successfully designed and demonstrated single high penetration/high blast warhead
- PAX-3 explosive was downselected from a group of high blast explosives through experimentation and testing
- Allows for a single multipurpose design to be fielded with armor defeat and enhanced blast capabilities
- PAX-3 was shown to be IM compliant