Embedded Diagnostics, Prognostics and Maintenance for Environmental Control Systems

Al Garcia
Corporate Staff Scientist
Engineered Support Systems, Inc.
201 Evans Lane, St. Louis, MO 63121
(314) 553-4363 agarcia@essihq.com

Allen Springer, Jr. - Engineered Air Systems, Inc, St. Louis, MO 63121
Tom Andrews - Keco Industries, Inc., Florence, KY 41022
Dillard Pegg - Engineered Environments Inc., Cincinnati, OH 45245
Frank Tricomi, Sr. - ESSIbuy.com, St. Louis, MO 63121
Presentation Outline

- Background
- Objective
- Overview
- Status
- Concluding Remarks
Environmental control is pervasive in military operations.

- FCU
- AHU
- FDECU
- IECU
- CHAMP
- LECU
- SPLIT PACK
Background

- Level of equipment upkeep varies considerably
 - Navy Fan Coil Unit -
 - Operation is checked using the “hand” test
 - Units frequently operate without an air filter
 - CP EMEDS -
 - Startup and upkeep is time consuming
 - Teams check the equipment twice a day
 - Operational deficiencies take time to identify and locate
- Growing interest in diagnostics and prognostics
Next Generation ECU

- Embedded diagnostics and prognostics
 - Condition Based Maintenance approach
 - Low cost hardware
 - Reduced life-cycle cost
- Centralized equipment monitor and control
 - Operator interface via computer
- Integral link to equipment’s technical manual
 - Faster maintenance action
Technology Integration

- FCU Diagnostics
- CBPS Processor
- Telelogistics

NEXT GENERATION ECU
DP&M Approach

- Data acquisition
- Initial Diagnosis - Normal versus Abnormal operation.
 - Prognosis - Time-to-fail, time-to-replace.
 - Diagnosis - Faulty component or ranked ambiguity set.
 - Troubleshooting and Repair - IETM.
Resolution Level

- Condenser side
 - Compressor
 - Condenser coil
 - Condenser fan
- Evaporator side
 - Evaporator coil
 - Heater element
 - Circulation fan
 - Air filter
- Control box
Conditions of Interest (Typical)

- Dirty condenser coil
- Dirty refrigerant filter
- Dirty air filter
- Compressor circuit failure
- Heater circuit failure
- Fan / Blower motor failure
- High compressor discharge temperature
- Low refrigerant level
Signals Available (Typical)

- **Analog**
 - Compressor
 - crankcase temperature
 - suction / discharge temperature
 - suction / discharge pressure
 - Condenser
 - coil temperature
 - inlet / outlet temperature
 - Evaporator
 - supply / return temperature
 - Air filter differential pressure
 - Air temperature - indoor / outdoor
 - Dryer outlet temperature
 - Liquid line temperature

- **Discrete**
 - Compressor
 - temperature HI
 - pressure LO / HI
 - unit ON / OFF
 - Blower / Fan
 - motor overload
 - unit ON / OFF
 - Heater bank
 - temperature HI
 - unit ON / OFF
 - Cover ON / OFF
DP&M Implementation

- Non-intrusive in operation
- Uses domain expert knowledge
- Input: \{P_{eva,in}, P_{eva,out}, T_{eva,ref,in}, T_{eva,ref,out}, T_{eva,air,in}, T_{eva,air,out}\}
- Output:
 - Normal state - time-to-replace air filter
 - Abnormal state - condenser unit and evaporator unit “fault code”
Embedded Hardware

- Small form factor
 - 2.75” x 5.50”
- 16 DIN, 24 DOUT (8@1A), and 10 AIN
- Data interface
 - RS-232, RS-485 and Ethernet
- Removable memory card
- 28 VDC power input
- Connectors
 - Signal and power
- NEMA 4 enclosure (optional)
Operator Remote Terminal

- Toughbook notebook PC
 - Integrated wireless LAN
 - Moisture and dust resistant
 - Magnesium alloy case
- Microsoft Windows XP
User Interface

Equipment Monitor and Control

Monitor and Report

Parts Requisition

Maintenance Action

Troubleshoot

Electronic Technical Manual

June 21-23, 2005 - Monterey, CA
Concluding Remarks

- DP&M approach is applicable to any ECU
- Integrates past work in diagnostics, embedded processors and telelogistics
- Provides insight into the health of the ECU
- Provides insight into the health of the COLPRO shelter
- Reduces manpower needs
- Reduces time to detect a malfunction
- Reduces time to perform a maintenance action
-Eliminates the need for bulky manuals
- Provides a “heads-up” on up-coming required maintenance
- Reduces parts inventory
Closing Thought

- Even non-CBNR environments can be challenging
END OF PRESENTATION