COLPRO 2005 Coatings for Expedient Collective Protection

23 June 2005

Michael V. Henley

Airbase Technologies Division, Materials & Manufacturing Directorate Carrie A. Delcomyn and H. Scott Maclean Applied Research Associates Tyndall AFB, Florida

APPROVED FOR PUBLIC RELEASE

- The problem and our approach
- Shelter "proof-of-concept" study
- Results
- Current and future studies
- Benefits to the warfighter

M28 ColPro Components

Current ColPro systems are good, but...

Security provided outside medical examination room in Afghanistan

How do we provide ColPro in situations like the one shown above?

Objective:

Provide a means of expeditionary collective protection where no pre-existing ColPro capability exists

Approach:

Evaluate performance of non-toxic coatings for simple and effective application to interior of any structure for the purpose of facilitating a positive pressure barrier against CB intrusion **First Question – Is it feasible?**

Technical Approach for Proof-of-Concept

- Conduct Preliminary Search for Coatings
 - Evaluate potential coatings
 - COTS
 - Encapsulating or protective
 - Strippable preferred
 - Down select two for shelter study

- Evaluate application
 - Difficulty
 - Coverage efficiency
 - Dry time
- Determine leakage rate
 - Uncoated (baseline)
 - Coated

http://www.generalchem.com/peelable_coatings.asp

Coating A

Coating B

Coating C

- Minneapolis Blower Door[™] & Tectite v.3.1 software
- Positive pressures applied to measure leak rate at 0.1, 0.2, 0.3, 0.4, 0.5, & 0.6 iwg (triplicate measurements)
- Recommended over-pressurization of ColPro shelter: 0.3 0.5 iwg
- Weather station to monitor barometric pressure, temperature, & humidity
- Corrects for wind speed by sampling 100 data points @ each pressure
- Data corrected to standard conditions (scfm): 68°F, 29.92 in Hg, 50% relative humidity

Average Temperature: 94°F Average Humidity: 55%

Wagner Paint Sprayer

Leakage rate (scfm) at 0.5 iwg:

 Baseline
 Coated

 706.6
 219.1

Resulted in 69% reduction of leakage

Apparent gaps remaining...

- Fabricated door using plastic
- M28 blower used for extended supply
- Purge holes cut to achieve stable pressure at 0.5 iwg
- Pressurized for 19 hours

Leakage Rate: Coated vs. Coated w/ Window Uncovered

- Coating interior of shelter achieved a 69% reduction in leakage
- Taping large gaps after application of coating achieved 76% reduction in leakage
- Window covered with plastic, duct tape and coating contributed 11% to the measurements
- Insignificant pressure loss observed through uncoated paneling
- Proof-of-concept demonstrated feasibility of using coatings as expedient ColPro barriers

Penetration

- Occurs through pores and unsealed cracks and openings
- Compounded by pressure gradients
 - Wind can overcome positive interior pressure
 - Shock from an explosion can cause air to infiltrate
- Current guidance is to maintain overpressure at 0.02-0.3 iwg

Permeation

- Occurs through molecular diffusion across a polymer barrier (concentration gradient)
- Pressure does not prevent transport through the barrier material
- Can be controlled through various mechanisms
 - Additives impervious or sorptive
 - Reactive

Ongoing Studies

- Comprehensive benchscale evaluation of numerous coatings
- Permeability studies with CW simulants

Breakthrough of half mustard vapor through a 7 mil dft film

Penetration Studies

Split wood panel coupons sealed with coatings for leakage studies Pressurization data at 22°C of uncoated versus coated split wood panel coupons

- Determine applicability with tentage (TEMPER)
- Define desired coating characteristics and performance criteria
- Perform agent permeation and compatibility studies
- Evaluate performance of expediently coated shelter system against vapor and environmental challenges

- Capability to setup ColPro virtually within any structure
- Compatible with existing ColPro filtration/airlock systems
- Temporary (removable coatings) or permanent concepts
- Quick, easy and familiar application techniques
- Uses non-hazardous materials
- Minimal logistics burden
- Facilitates rapid restoration of operations
 - Potential to reduce size and weight necessary for ColPro
 - Rapidly increase quantity and availability of expedient ColPro systems

Tyndall AFB, Florida AFRL/MLQL:

Bob Nichols, & Sue Broxson, Applied Research Associates, Inc.

Eglin AFB, Florida 28th TS/TEH

- Scott Matheson & Vic Arca, Sverdrup Technology, Inc.
- Terese Anderson, Orion International Technologies
- Bill Gillespie, Sentel
- Dale Pierce, AWFC 28th TS

DTRA/CBT Joint S&T Office

• Tony Ramey & Bruce Nielsen, Protection Capability Area