SENSE AND RESPOND THEORETIC FUNDAMENTALS

Jeff Cares

Alidade Incorporated

2 December 2003

Central Ideas

- Exploitable properties of Complex Networks
 - Hubs/Spokes distributed by Power Law
 - Tipping Points in dynamic structure
- Networks better than chains in complex environments
 - Inherent adaptation v. engineered optimization
- Demand as complex network control signal
 - Derived from consumptive behavior, e.g., combat

Demand Networks v. Supply Chains

Important Network Properties

- Degree
 - Distribution of links among nodes
- Clustering
 - Local, mutually supporting link structure
- Network Effects
 - Indirect compounding feed-forward/ feedback
 - Autocatalysis
- Tipping Points
 - Rapid accumulation of network effects
- Susceptibility
 - Loss of network effects due to node, link removal
- Neutrality
 - Additional latent (not necessarily redundant) node and link structure

Thumb Rules for Analysis and Experimentation

Property	Range	Effect
Number of Nodes, n	<i>n</i> > ~100	Network effects unlikely to occur with $n < 50$
Number of links, I	l < ~2n	<pre>/ << 2n, too brittle / >> 2n, too much overhead</pre>
Degree Distribution	Skew Distribution	Adaptive control, recombination
Largest Hub	< 100 links	Hub appears, recedes by reconnection 5% of links
Average Path Length	O(<i>n</i>)	Short distances even for large networks (e.g., $10^4 \text{ nodes} \rightarrow \text{Average Path Length} = \sim 4$)
Clustering	Skew Distribution	Adaptive hierarchy, modularity
Susceptibility	Low (random removal) High (focused removal)	Hubs must be kept obscure until needed FP an issue once hubs identified
Neutrality	High	Increased network effects, decreased susceptibility, tipping points

<u>Chain</u>

Too brittle, long paths, low clustering, simple pattern, simple control, scaled

"business end" most poorly connected, hard to reconfigure or change flow

Network

Very robust, short paths, low clustering, complex pattern, complex control, scale free

"business end" best connected, natural to reconfigure or change flow

Supply v. Demand

- "Supply" perspective rooted in Industrial Age Logistics
 - Paragon is WalMart Model
 - Focus is on decreasing time or cost of delivery
 - Using IT to refine the supply chain by shortening the chain (disintermediation) and better prediction
 - Still has an upper limit of efficiency
 - Would function poorly under the type of uncertainty and scales we see in combat operations
- "Demand" is the real control signal
 - Closely related to Commander's Intent
 - Intimately related to unfolding battlefield operations

Sense & Respond Logistics

- Demand Networks rather than Supply Chains
 - Turn units in the main effort into nodes of preferential attachment
 - Quickly reconfigure network and hubs as situation unfolds
 - Closely tie logistics to operations through Commander's Intent
 - Obscure the intent with a distributed logistics train while operating without a centralized dump
 - Adaptive Learning v. Reactive Planning

Questions?