

Understanding Software Security

John Viega Founder & Chief Scientist

Introduction

- Who is Secure Software?
 - Services and technologies for finding security vulnerabilities in software
 - Providing the core technology for the NMCI Product Evaluation Center
- John Viega, Chief Scientist
 - Author of 3 software security books
 - Developed core technologies
- Peter Thimmesch, CEO
 - Peer-to-peer pioneer developer
- Concepts to be discussed
 - Core security issues are in the software, not the network
 - What should you do about the problem?
 - What are the implications for NMCI?

Recipes for Cryptography, Authentication,
Networking, Input valuation & More
Secure VVV
becuie
Drogramming
riogramming
O 11 1
COOKDOOK
COORCOOR
for C and C++
O'REILLY [®] John Viega & Matt Messier

Problems are in the software

- An analogy: Airplanes are the software, the security checkpoint is network security
- Virtually every security problem is due to bugs in software
- Network security is only a first layer of defense
 - Firewalls only limit communication avenues
 - Intrusion detection only detects against "known" attacks.
- Another analogy: Both the recipe and the chef need to be competent to make a good cookie
- Producing secure software requires skillful design and coding both

Problems for everybody

- Consequences vary
 - Denial of service
 - Data theft
 - Data destruction
 - Complete system penetration (ability to install and run new programs)
- Occasionally attacks are highly automated ("Worms")
 - SQL Slammer: Microsoft SQL Server
 - Code Red, Nimda: Microsoft IIS Server
- Dozens of new problems are publicly reported daily
- Bad guys use these and unreported problems when breaking into machines

Economics

- Despite \$8.5B spent annually on perimeter security the number of breaches is significantly on the rise
- Cost of recovering from security breaches cost \$1.5T worldwide in 2000¹
- Security breaches cost U.S. businesses with more than 1,000 employees \$266B or 2.7% GDP¹
- Software vendors may eventually face liability, and can currently lose "brand"

"Coding errors in commercial software account for 80% systems penetration. This is clearly a national security issue."²

1) InformationWeek & PricewaterhouseCoopers
2) Air Force CIO John Gilligan, Information Week - 3/18/02

Why So Many Coding Errors?

- Software developers:
 - are driven to meet deadlines due to time to market pressure
 - lack security expertise
 - do not have any tools for secure software development
 - wrongly assume perimeter security adequately guards applications
- It's only partially their fault!
 - Software security is a vast, complex topic, and rarely is a high priority in feature-driven development
 - Development is hard enough without needing to be a security expert!

Common Misconceptions

- Fiction: Intrusion Detection solves the problem
 - IDS systems rarely stop suspect connections
 - High false positive rates
 - New vulnerabilities can almost always get through IDS systems
 - Gartner has said IDS will be obsolete by 2005
- Fiction: Java doesn't have security problems
 - Most problems are in architecture, not implementation
 - Flaws per 1000 lines of code:
 - C: about 3
 - Java: about 1
 - Numbers vary significantly depending on the inherent risks and quality of development
- Fiction: SSL solves our problems
 - I give a talk, "Why SSL isn't securing your software"
 - The gist: It's used wrong at least 90% of the time
 - Even so, there's still plenty of room for other problems

Fixing software development

- Integrate security throughout the development lifecycle (build with security in mind)
- Cultivate software security expertise (e.g., by training)
- Use independent third-party reviews
- Leverage tools for producing secure software (such tools will improve over time)

